Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Portfolio selection under model uncertainty: a penalized moment-based optimization approach

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We present a new approach that enables investors to seek a reasonably robust policy for portfolio selection in the presence of rare but high-impact realization of moment uncertainty. In practice, portfolio managers face difficulty in seeking a balance between relying on their knowledge of a reference financial model and taking into account possible ambiguity of the model. Based on the concept of Distributionally Robust Optimization (DRO), we introduce a new penalty framework that provides investors flexibility to define prior reference models using the distributional information of the first two moments and accounts for model ambiguity in terms of extreme moment uncertainty. We show that in our approach a globally-optimal portfolio can in general be obtained in a computationally tractable manner. We also show that for a wide range of specifications our proposed model can be recast as semidefinite programs. Computational experiments show that our penalized moment-based approach outperforms classical DRO approaches in terms of both average and downside-risk performance using historical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, E.W., Hansen, L.P., Sargent, T.J.: A quartet of semigroups for model specification, robustness, prices of risk, and model detection. J. Eur. Econ. Assoc. 1(1), 68–123 (2003). (Joint with L. P. Hansen and T. J. Sargent.)

    Google Scholar 

  2. Ben-Tal A., Bertsimas D., Brown D.B.: A soft robust model for optimization under ambiguity. Oper. Res. 58(4), 1220–1234 (2010)

    Article  Google Scholar 

  3. Ben-Tal A., Nemirovski A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, MPS/SIAM Series on Optimization. SIAM, Philadelphia, PA (2001)

    Book  Google Scholar 

  4. Ben-Tal A., Nemirovski A.: Robust optimization—methodology and applications. Math. Program. Ser. B 92(3), 453–480 (2002)

    Article  Google Scholar 

  5. Ben-Tal A., Boyd S., Nemirovski A.: Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems. Math. Program. Ser. B 107(1), 63–89 (2006)

    Article  Google Scholar 

  6. Bertsekas D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont, MA (1999)

    Google Scholar 

  7. Bertsimas D., Sim M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  Google Scholar 

  8. Black F., Litterman R.: Global portfolio optimization. Financ. Anal. J. 48, 28–43 (1992)

    Article  Google Scholar 

  9. Calafiore G.: Ambiguous risk measures and optimal robust portfolios. SIAM J. Optim. 18(3), 853–877 (2007)

    Article  Google Scholar 

  10. Chen W., Sim M.: Goal-driven optimization. Oper. Res. 57(2), 342–357 (2009)

    Article  Google Scholar 

  11. Cont R.: Model uncertainty and its impact on the pricing of derivative instruments. Math. Financ. 16, 519–547 (2006)

    Article  Google Scholar 

  12. Delage E., Ye Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

    Article  Google Scholar 

  13. El Ghaoui L., Oks M., Oustry F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51(3), 543–556 (2003)

    Article  Google Scholar 

  14. Ellsberg D.: Risk, ambiguity, and the savage axioms. Q. J. Econ. 75(4), 643–669 (1961)

    Article  Google Scholar 

  15. Gilboa I., Schmeidler D.: Maxmin expected utility with a non-unique prior. J. Math. Econ. 18(2), 141–153 (1989)

    Article  Google Scholar 

  16. Goldfarb D., Iyengar G.: Robust portfolio selection problems. Math. Oper. Res. 28(1), 1–38 (2003)

    Article  Google Scholar 

  17. Goldfarb D., Scheinberg K.: On parametric semidefinite programming. Appl. Numer. Math. 29(3), 361–377 (1999)

    Article  Google Scholar 

  18. Grötschel M., Lovász L., Schrijver A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

    Article  Google Scholar 

  19. Hansen L., Sargent T.: Robust control and model uncertainty. Am. Econ. Rev. 91(2), 60–66 (2001)

    Article  Google Scholar 

  20. Kolda T.G., Lewis R.M., Torczon V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45(3), 385–482 (2003)

    Article  Google Scholar 

  21. Kullback S.: Information Theory and Statistics. John Wiley and Sons, New York (1959)

    Google Scholar 

  22. Kullback S., Leibler R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  Google Scholar 

  23. Luenberger D.G.: Investment Science. Oxford University Press, Oxford (1999)

    Google Scholar 

  24. Maenhout P.J.: Robust portfolio rules and asset pricing. Rev. Financ. Stud. 17(4), 951–983 (2004)

    Article  Google Scholar 

  25. Natarajan K., Sim M., Uichanco J.: Tractable robust expected utility and risk models for porfolio optimization. Math. Financ. 20(4), 695–731 (2008)

    Article  Google Scholar 

  26. Nesterov Y., Nemirovski A.: Interior Point Polynomial Methods in Convex Programming: Theory and Applications. SIAM, Philadelphia, PA (1994)

    Book  Google Scholar 

  27. Popescu I.: Robust mean-covariance solutions for stochastic optimization. Oper. Res. 55(1), 98–112 (2007)

    Article  Google Scholar 

  28. Ramana M.V., Pardalos P.M.: Semidefinite programming. In: Terlaky, T. (eds) Interior Point Methods of Mathematical Programming, pp. 369–398. Kluwer Academic Publishers, Dordrecht (1996)

    Chapter  Google Scholar 

  29. Shapiro A.: On duality theory of conic linear problems. In: Goberna, M.A., López, M.A. (eds) Semi-Infinite Programming: Recent Advances, pp. 135–165. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  30. Tütüncü R.H., Koenig M.: Robust asset allocation. Ann. Oper. Res. 132, 157–187 (2004)

    Article  Google Scholar 

  31. Uppal R., Wang T.: Model misspecification and under-diversification. J. Financ. 58(6), 2465–2486 (2003)

    Article  Google Scholar 

  32. Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  Google Scholar 

  33. Wolkowicz, H., Saigal, R., Vandenberghe, L (eds.).: Handbook of Semidefinite Programming and Applications. Kluwer Academic Publishers, Dordrecht (2000)

  34. Zhu S.S., Fukushima M.: Worst-case conditional value-at-risk with application to robust portfolio management. Oper. Res. 57(5), 1155–1168 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy H. Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.Y., Kwon, R.H. Portfolio selection under model uncertainty: a penalized moment-based optimization approach. J Glob Optim 56, 131–164 (2013). https://doi.org/10.1007/s10898-012-9969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9969-1

Keywords

Navigation