Abstract
We present a new approach that enables investors to seek a reasonably robust policy for portfolio selection in the presence of rare but high-impact realization of moment uncertainty. In practice, portfolio managers face difficulty in seeking a balance between relying on their knowledge of a reference financial model and taking into account possible ambiguity of the model. Based on the concept of Distributionally Robust Optimization (DRO), we introduce a new penalty framework that provides investors flexibility to define prior reference models using the distributional information of the first two moments and accounts for model ambiguity in terms of extreme moment uncertainty. We show that in our approach a globally-optimal portfolio can in general be obtained in a computationally tractable manner. We also show that for a wide range of specifications our proposed model can be recast as semidefinite programs. Computational experiments show that our penalized moment-based approach outperforms classical DRO approaches in terms of both average and downside-risk performance using historical data.
Similar content being viewed by others
References
Anderson, E.W., Hansen, L.P., Sargent, T.J.: A quartet of semigroups for model specification, robustness, prices of risk, and model detection. J. Eur. Econ. Assoc. 1(1), 68–123 (2003). (Joint with L. P. Hansen and T. J. Sargent.)
Ben-Tal A., Bertsimas D., Brown D.B.: A soft robust model for optimization under ambiguity. Oper. Res. 58(4), 1220–1234 (2010)
Ben-Tal A., Nemirovski A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, MPS/SIAM Series on Optimization. SIAM, Philadelphia, PA (2001)
Ben-Tal A., Nemirovski A.: Robust optimization—methodology and applications. Math. Program. Ser. B 92(3), 453–480 (2002)
Ben-Tal A., Boyd S., Nemirovski A.: Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems. Math. Program. Ser. B 107(1), 63–89 (2006)
Bertsekas D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont, MA (1999)
Bertsimas D., Sim M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
Black F., Litterman R.: Global portfolio optimization. Financ. Anal. J. 48, 28–43 (1992)
Calafiore G.: Ambiguous risk measures and optimal robust portfolios. SIAM J. Optim. 18(3), 853–877 (2007)
Chen W., Sim M.: Goal-driven optimization. Oper. Res. 57(2), 342–357 (2009)
Cont R.: Model uncertainty and its impact on the pricing of derivative instruments. Math. Financ. 16, 519–547 (2006)
Delage E., Ye Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)
El Ghaoui L., Oks M., Oustry F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51(3), 543–556 (2003)
Ellsberg D.: Risk, ambiguity, and the savage axioms. Q. J. Econ. 75(4), 643–669 (1961)
Gilboa I., Schmeidler D.: Maxmin expected utility with a non-unique prior. J. Math. Econ. 18(2), 141–153 (1989)
Goldfarb D., Iyengar G.: Robust portfolio selection problems. Math. Oper. Res. 28(1), 1–38 (2003)
Goldfarb D., Scheinberg K.: On parametric semidefinite programming. Appl. Numer. Math. 29(3), 361–377 (1999)
Grötschel M., Lovász L., Schrijver A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)
Hansen L., Sargent T.: Robust control and model uncertainty. Am. Econ. Rev. 91(2), 60–66 (2001)
Kolda T.G., Lewis R.M., Torczon V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45(3), 385–482 (2003)
Kullback S.: Information Theory and Statistics. John Wiley and Sons, New York (1959)
Kullback S., Leibler R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)
Luenberger D.G.: Investment Science. Oxford University Press, Oxford (1999)
Maenhout P.J.: Robust portfolio rules and asset pricing. Rev. Financ. Stud. 17(4), 951–983 (2004)
Natarajan K., Sim M., Uichanco J.: Tractable robust expected utility and risk models for porfolio optimization. Math. Financ. 20(4), 695–731 (2008)
Nesterov Y., Nemirovski A.: Interior Point Polynomial Methods in Convex Programming: Theory and Applications. SIAM, Philadelphia, PA (1994)
Popescu I.: Robust mean-covariance solutions for stochastic optimization. Oper. Res. 55(1), 98–112 (2007)
Ramana M.V., Pardalos P.M.: Semidefinite programming. In: Terlaky, T. (eds) Interior Point Methods of Mathematical Programming, pp. 369–398. Kluwer Academic Publishers, Dordrecht (1996)
Shapiro A.: On duality theory of conic linear problems. In: Goberna, M.A., López, M.A. (eds) Semi-Infinite Programming: Recent Advances, pp. 135–165. Kluwer Academic Publishers, Dordrecht (2001)
Tütüncü R.H., Koenig M.: Robust asset allocation. Ann. Oper. Res. 132, 157–187 (2004)
Uppal R., Wang T.: Model misspecification and under-diversification. J. Financ. 58(6), 2465–2486 (2003)
Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)
Wolkowicz, H., Saigal, R., Vandenberghe, L (eds.).: Handbook of Semidefinite Programming and Applications. Kluwer Academic Publishers, Dordrecht (2000)
Zhu S.S., Fukushima M.: Worst-case conditional value-at-risk with application to robust portfolio management. Oper. Res. 57(5), 1155–1168 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, J.Y., Kwon, R.H. Portfolio selection under model uncertainty: a penalized moment-based optimization approach. J Glob Optim 56, 131–164 (2013). https://doi.org/10.1007/s10898-012-9969-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-012-9969-1