Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Weak Fenchel and weak Fenchel-Lagrange conjugate duality for nonconvex scalar optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this work, by using weak conjugate maps given in (Azimov and Gasimov, in Int J Appl Math 1:171–192, 1999), weak Fenchel conjugate dual problem, \({(D_F^w)}\) , and weak Fenchel Lagrange conjugate dual problem \({(D_{FL}^w)}\) are constructed. Necessary and sufficient conditions for strong duality for the \({(D_F^w)}\) , \({(D_{FL}^w)}\) and primal problem are given. Furthermore, relations among the optimal objective values of dual problem constructed by using Augmented Lagrangian in (Azimov and Gasimov, in Int J Appl Math 1:171–192, 1999), \({(D_F^w)}\) , \({(D_{FL}^w)}\) dual problems and primal problem are examined. Lastly, necessary and sufficient optimality conditions for the primal and the dual problems \({(D_F^w)}\) and \({(D_{FL}^w)}\) are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azimov A.Y., Gasimov R.N.: On weak conjugacy, weak subdifferentials and duality with zero gap in nonconvex optimization. Int. J. Appl. Math. 1, 171–192 (1999)

    Google Scholar 

  2. Fenchel W.: On conjugate convex functions. Can. J. Math. 1, 73–77 (1949)

    Article  Google Scholar 

  3. Moreau J.J.: Convexity and Duality in Functional Analysis and Optimization. Academic Press, New York (1966)

    Google Scholar 

  4. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley (1951)

  5. Rockafellar R.T.: Extension of Fenchel’s duality theorem for convex functions. Duke Math. J. 33, 81–90 (1966)

    Article  Google Scholar 

  6. Rockafellar R.T.: Augmented Lagrange multiplyer functions and duality in nonconvex programming. SIAM J. Control Optim. 12, 1–19 (1974)

    Article  Google Scholar 

  7. Balder E.J.: An extension of duality-stability relations to nonconvex optimization problems. SIAM J. Control Optim. 15, 329–343 (1977)

    Article  Google Scholar 

  8. Hanson M.A.: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545–550 (1981)

    Article  Google Scholar 

  9. Jeyakumar V., Wolkowicz H.: Zero duality gaps in infinite-dimensional programming. J. Optim. Theory Appl. 67, 87–108 (1990)

    Article  Google Scholar 

  10. Rockafellar R.T.: Lagrange multipliers and optimality. SIAM Rev. 35, 183–238 (1993)

    Article  Google Scholar 

  11. Tnach P.T.: A nonconvex duality with zero gap and applications. SIAM J. Optim. 4, 44–64 (1994)

    Article  Google Scholar 

  12. Khanh P.Q.: Invex-convexlike functions and duality. J. Optim. Theory Appl. 87, 141–165 (1995)

    Article  Google Scholar 

  13. Boţ R.I., Kassay G., Wanka G.: Strong duality for generalized convex optimization problems. J. Optim. Theory Appl. 127, 45–70 (2005)

    Article  Google Scholar 

  14. Azimov A.Y., Gasimov R.N.: Stability and duality of nonconvex problems via augmented Lagrangian. Cybern. Syst. Anal. 38, 412–421 (2002)

    Article  Google Scholar 

  15. Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems. Springer, New York (2010)

    Book  Google Scholar 

  16. Martínez-Legaz J.E., Sosa W.: Duality for equilibrium problems. J. Global Optim. 35(2), 311–319 (2006)

    Article  Google Scholar 

  17. Giannessi F.: On the theory of Lagrangian duality. Optim. Lett. 1(1), 9–20 (2007)

    Article  Google Scholar 

  18. Li S.J., Zhao P.: A method of duality for a mixed vector equilibrium problem. Optim. Lett. 4(1), 85–96 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalçın Küçük.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küçük, Y., Atasever, İ. & Küçük, M. Weak Fenchel and weak Fenchel-Lagrange conjugate duality for nonconvex scalar optimization problems. J Glob Optim 54, 813–830 (2012). https://doi.org/10.1007/s10898-011-9794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9794-y

Keywords

Mathematics Subject Classification (2000)

Navigation