Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Duality for optimization problems in Banach algebras

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we consider Mond–Weir type and Wolfe type duals for a general nonsmooth optimization problem in Banach algebras, and establish some duality results in the presence of a new class of functions, which is a generalization of the class of smooth KT-(p, r)-invex functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghezzaf B., Hachimi M.: Generalized invexity and duality in multiobjective programming problems. J. Global Optim. 18, 91–101 (2000)

    Article  Google Scholar 

  2. Antczak T.: (ρ, r)-invex sets and functions. J. Math. Anal. Appl. 263, 355–379 (2001)

    Article  Google Scholar 

  3. Bazaraa M.S., Sherali H.D., Shetty C.M.: Nonlinear programming theory and algorithms, 2nd edn. Wiley, New York (1993)

    Google Scholar 

  4. Cambini A., Martein L.: Generalized concavity in multi-objective optimization, 2nd edn. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, pp. 1175–1180. Springer, Berlin (2009) ISBN 978-0-387-74758-3

    Chapter  Google Scholar 

  5. Clarke F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  6. Clarke F.H., Ledyaev Y.S., Stern R.J., Wolenski P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    Google Scholar 

  7. Craven B.D.: Invexity and its Applications. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, 2nd edn., pp. 1770–1774. Springer, Berlin (2009) ISBN 978-0-387-74758-3

    Chapter  Google Scholar 

  8. Floudas, C.A., Pardalos, P.M. (eds): Encyclopedia of Optimization, 2nd edn. Springer, Berlin (2009) ISBN 978-0-387-74758-3

    Google Scholar 

  9. Goemans, M.: Semidefinite programming and combinatorial optimization. Technical report (1998)

  10. Gulati T.R., Mehndiratta G.: Nondifferentiable multiobjective Mond–Weir type second-order symmetric duality over cones. Optim. Lett. 4, 293–309 (2010)

    Article  Google Scholar 

  11. Hanson M.A.: On sufficiency of Kuhn Tucker Conditions. J. Math. Anal. Appl. 80, 545–550 (1981)

    Article  Google Scholar 

  12. Jeyakumar V., Mond B.: On generalized convex mathematical programming. J. Austral. Math. Soc. Ser. B. 34, 43–53 (1992)

    Article  Google Scholar 

  13. Leibowitz G.M.: Lectures on Complex Function Algebras. Scott, Foresman and Company, Illinois (1970)

    Google Scholar 

  14. Lim S., Lee S., Park S.: An ε-sensitivity analysis for semidefinite programming. Eur. J. Oper. Res. 164, 417–422 (2005)

    Article  Google Scholar 

  15. Meziat R., Patino D.: Exact relaxations of non-convex variational problems. Optim. Lett. 2, 505–519 (2008)

    Article  Google Scholar 

  16. Mishra S.K.: Second order symmetric duality with F-convexity. Eur. J. Oper. Res. 127, 507–518 (2000)

    Article  Google Scholar 

  17. Mohan S.R., Neogy S.K.: On invex sets and preinvex functions. J. Math. Anal. Appl. 189, 901–908 (1995)

    Article  Google Scholar 

  18. Mond B., Weir T.: Generalized concavity and duality. In: Schaible, S., Ziemba, W.T. (eds) Generalized Concavity in Optimization and Economics, pp. 263–279. Academic Press, New York (1981)

    Google Scholar 

  19. Mordukhovich, B.S.: Variations Analysis and Generalized Differentiation, I: Basic Theory, vol. 330. Springer, Grundlehren Series (Fundamental Principles of Mathematical Sciences) (2006)

  20. Mordukhovich, B.S.: Variations Analysis and Generalized Differentiation, II: Applications, vol. 331. Springer, Grundlehren Series (Fundamental Principles of Mathematical Sciences) (2006)

  21. Noor M.A.: On generalized preinvex functions and monotonicities. J. Inequal. Pure Appl. Math. 5, 1–9 (2004)

    Google Scholar 

  22. Overton M., Wolkowicz H.: Semidefinite programming. Math. Program. 77, 105–109 (1997)

    Google Scholar 

  23. Parpas P., Rustem B.: Duality gaps in nonconvex optimization. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, 2nd edn, Springer, Berlin (2009) ISBN 978-0-387-74758-3

    Google Scholar 

  24. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Google Scholar 

  25. Rockafellar R.T., Wets R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  26. Rudin W.: Functional Analysis. McGraw-Hill, New York (1973)

    Google Scholar 

  27. Rueda N.G., Hanson M.A.: Optimality criteria in mathematical programming involving generalized invexity. J. Math. Anal. Appl. 130, 375–385 (1988)

    Article  Google Scholar 

  28. Soleimani-damaneh M.: Characterization of nonsmooth quasiconvex and pseudoconvex functions. J. Math. Anal. Appl. 330(2), 2168–2176 (2007)

    Article  Google Scholar 

  29. Soleimani-damaneh M.: The gap function for optimization problems in Banach spaces. Nonlinear Anal. 69, 716–723 (2008)

    Article  Google Scholar 

  30. Soleimani-damaneh M.: Infinite (semi-infinite) problems to characterize the optimality of nonlinear optimization problems. Eur. J. Oper. Res. 188(1), 49–56 (2008)

    Article  Google Scholar 

  31. Soleimani-damaneh M.: Nonsmooth optimization using Mordukhovich’s subdifferential. SIAM J. Control Optim. 48, 3403–3432 (2010)

    Article  Google Scholar 

  32. Wolfe P.: A duality theorem for nonlinear programming. Q. Appl. Math. 19, 239–244 (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Soleimani-damaneh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soleimani-damaneh, M. Duality for optimization problems in Banach algebras. J Glob Optim 54, 375–388 (2012). https://doi.org/10.1007/s10898-011-9763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9763-5

Keywords

Navigation