Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On stable uniqueness in linear semi-infinite optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper is intended to provide conditions for the stability of the strong uniqueness of the optimal solution of a given linear semi-infinite optimization (LSIO) problem, in the sense of maintaining the strong uniqueness property under sufficiently small perturbations of all the data. We consider LSIO problems such that the family of gradients of all the constraints is unbounded, extending earlier results of Nürnberger for continuous LSIO problems, and of Helbig and Todorov for LSIO problems with bounded set of gradients. To do this we characterize the absolutely (affinely) stable problems, i.e., those LSIO problems whose feasible set (its affine hull, respectively) remains constant under sufficiently small perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin J.P., Frankowska H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    Google Scholar 

  2. Bank B., Guddat J., Klatte D., Kummer B., Tammer K.: Non-Linear Parametric Optimization. Birkhäuser, Basel (1983)

    Google Scholar 

  3. Cánovas M.J., Hantoute A., López M.A., Parra J.: Stability of indices in the KKT conditions and metric regularity in convex semi-infinite optimization. J. Optim. Theory Appl. 86, 485–500 (2008)

    Article  Google Scholar 

  4. Cánovas M.J., Klatte D., López M.A., Parra J.: Metric regularity in convex semi-infinite optimization under canonical perturbations. SIAM J. Optim. 18, 717–732 (2007)

    Article  Google Scholar 

  5. Charnes A., Cooper W.W., Kortanek K.O.: On representations of semi-infinite programs which have no duality gaps. Manag. Sci. 12, 113–121 (1965)

    Article  Google Scholar 

  6. Dantzig G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)

    Google Scholar 

  7. Fort M.K.: A unified theory of semi-continuity. Duke Math. J. 16, 237–246 (1949)

    Article  Google Scholar 

  8. Goberna M.A., Gómez S., Guerra F., Todorov M.I.: Sensitivity analysis in linear semi-infinite programming: perturbing cost and right-hand-side coefficients. Eur. J.Oper. Res. 181, 1069–1085 (2007)

    Article  Google Scholar 

  9. Goberna M.A., Larriqueta M., Verade Serio V.N.: On the stability of the boundary of the feasible set in linear optimization. Set-Valued Anal. 11, 203–223 (2003)

    Article  Google Scholar 

  10. Goberna M.A., López M.A., Todorov M.I.: Unicity in linear optimization. J. Optim. Theory Appl. 86, 37–56 (1995)

    Article  Google Scholar 

  11. Goberna M.A., López M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998)

    Google Scholar 

  12. Goberna M.A., López M.A., Todorov M.I.: Extended active constraints in linear optimization with applications. SIAM J. Optim. 14, 608–619 (2003)

    Article  Google Scholar 

  13. Goberna M.A., López M.A., Todorov M.I.: A generic result in linear semi-infinite optimization. Appl. Math. Optim. 48, 181–193 (2003)

    Article  Google Scholar 

  14. Goberna M.A., Jeyakumar V., Dinh N.: Dual characterizations of set containments with strict inequalities. J. Glob. Optim. 34, 33–54 (2006)

    Article  Google Scholar 

  15. Helbig S., Todorov M.I.: Unicity results for general linear semi-infinite optimization problems using a new concept of active constraints. Appl. Math. Optim. 38, 21–43 (1998)

    Article  Google Scholar 

  16. Hettich, R., Zencke, P.: Numerische Methoden der Approximation und semi-infiniten Optimierung. Teubner B.G., Stuttgart (1982)

  17. Hettich R.: A review of numerical methods for semi-infinite optimization. In: Fiacco, A.V., Kortanek, K.O. (eds.) Semi-Infinite Programming and Applications, pp. 158–178. Springer, Berlin (1983)

    Chapter  Google Scholar 

  18. Kenderov P.S.: Continuity-like properties of set-valued mappings. Serdica 9, 149–160 (1983)

    Google Scholar 

  19. Mangasarian O.: Uniqueness of solutions in linear programming. Linear Algebra Appl. 25, 151–162 (1979)

    Article  Google Scholar 

  20. Nürnberger G.: Unicity in semi-infinite optimization. In: Brosowski, B., Deutsch, F. (eds.) Parametric Optimization and Approximation, pp. 231–247. Birkhäuser, Basel (1985)

    Google Scholar 

  21. Nürnberger G.: Strong unicity in nonlinear parametric optimization. In: Guddat, J., Jongen, H.Th., Kummer, B., Nozicka, F. (eds.) Parametric Optimization and Related Topics, pp. 316–326. Akademie, Berlin (1987)

    Google Scholar 

  22. Strauss H.: Uniqueness in linear semi-infinite optimization. J. Approx. Theory 75, 198–213 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Todorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goberna, M.A., Todorov, M.I. & Vera de Serio, V.N. On stable uniqueness in linear semi-infinite optimization. J Glob Optim 53, 347–361 (2012). https://doi.org/10.1007/s10898-011-9768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9768-0

Keywords

Mathematics Subject Classification (2000)

Navigation