Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Using the parametric approach to solve the continuous-time linear fractional max–min problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A numerical algorithm based on parametric approach is proposed in this paper to solve a class of continuous-time linear fractional max-min programming problems. We shall transform this original problem into a continuous-time non-fractional programming problem, which unfortunately happens to be a continuous-time nonlinear programming problem. In order to tackle this nonlinear problem, we propose the auxiliary problem that will be formulated as a parametric continuous-time linear programming problem. We also introduce a dual problem of this parametric continuous-time linear programming problem in which the weak duality theorem also holds true. We introduce the discrete approximation method to solve the primal and dual pair of parametric continuous-time linear programming problems by using the recurrence method. Finally, we provide two numerical examples to demonstrate the usefulness of this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson E.J., Nash P., Perold A.F.: Some properties of a class of continuous linear programs. SIAM J. Control Optim. 21, 758–765 (1983)

    Article  Google Scholar 

  2. Anderson E.J., Philpott A.B.: On the solutions of a class of continuous linear programs. SIAM J. Control Optim. 32, 1289–1296 (1994)

    Article  Google Scholar 

  3. Anderson E.J., Pullan M.C.: Purification for separated continuous linear programs. Math. Methods Oper. Res. 43, 9–33 (1996)

    Article  Google Scholar 

  4. Bellman R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)

    Google Scholar 

  5. Danskin J.M.: The Theory Maxmin and its Application to Weapon Allocation Problems. Spring, Berlin (1967)

    Book  Google Scholar 

  6. Dem’yanoy V.F., Malozemov V.N.: Introduction to Minimax. Wiley, New York (1974)

    Google Scholar 

  7. Farr W.H., Hanson M.A.: Continuous time programming with nonlinear constraints. J. Math. Anal. Appl. 45, 96–115 (1974)

    Article  Google Scholar 

  8. Farr W.H., Hanson M.A.: Continuous time programming with nonlinear time-delayed. J. Math. Anal. Appl. 46, 41–61 (1974)

    Article  Google Scholar 

  9. Fleischer L., Sethuraman J.: Efficient algorithms for separated continuous linear programs: the multicommodity flow problem with holding costs and extensions. Math. Oper. Res. 30, 916–938 (2005)

    Article  Google Scholar 

  10. Friedman A.: Foundations of Modern Analysis. Dover Publications Inc., New York (1982)

    Google Scholar 

  11. Frenk H., Schaible S.: Fractional programming. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, pp. 162–172. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  12. Grinold R.C.: Continuous programming part one : linear objectives. J. Math. Anal. Appl. 28, 32–51 (1969)

    Article  Google Scholar 

  13. Grinold R.C.: Continuous programming part two : nonlinear objectives. J. Math. Anal. Appl. 27, 639–655 (1969)

    Article  Google Scholar 

  14. Hanson M.A., Mond B.: A class of continuous convex programming problems. J. Math. Anal. Appl. 22, 427–437 (1968)

    Article  Google Scholar 

  15. Husain I., Jabeen Z.: Continuous-time fractional minmax programming. Math. Comput. Modell. 42, 701–710 (2005)

    Article  Google Scholar 

  16. Levinson N.: A class of continuous linear programming problems. J. Math. Anal. Appl. 16, 73–83 (1966)

    Article  Google Scholar 

  17. Liang Z.A., Pardalos P.M., Huang H.X.: Optimality conditions and duality for a class of nonlinear ractional programming problem. J. Optim. Theory Appl. 110, 611–619 (2001)

    Article  Google Scholar 

  18. Meidan R., Perold A.F.: Optimality conditions and strong duality in abstract and continuous-time linear programming. J. Optim. Theory Appl. 40, 61–77 (1983)

    Article  Google Scholar 

  19. Nobakhtian S., Pouryayevali M.R.: Optimality criteria for nonsmooth continuous-time problems of multiobjective optimization. J. Optim. Theory Appl. 136, 69–76 (2008)

    Article  Google Scholar 

  20. Nobakhtian S., Pouryayevali M.R.: Duality for nonsmooth continuous-time problems of vector optimization. J. Optim. Theory Appl. 136, 77–85 (2008)

    Article  Google Scholar 

  21. Papageorgiou N.S.: A class of infinite dimensional linear programming problems. J. Math. Anal. Appl. 87, 228–245 (1982)

    Article  Google Scholar 

  22. Pardalos P.M., Phillips A.: Global optimization of fractional programming. J. Glob. Optim. 1, 173–182 (1991)

    Article  Google Scholar 

  23. Pullan M.C.: An algorithm for a class of continuous linear programs. SIAM J. Control Optim. 31, 1558–1577 (1993)

    Article  Google Scholar 

  24. Pullan M.C.: Forms of optimal solutions for separated continuous linear programs. SIAM J. Control Optim. 33, 1952–1977 (1995)

    Article  Google Scholar 

  25. Pullan M.C.: A duality theory for separated continuous linear programs. SIAM J. Control Optim. 34, 931–965 (1996)

    Article  Google Scholar 

  26. Pullan M.C.: Convergence of a general class of algorithms for separated continuous linear programs. SIAM J. Optim. 10, 722–731 (2000)

    Article  Google Scholar 

  27. Pullan M.C.: An extended algorithm for separated continuous linear programs. Math. Programm. Ser. A 93, 415–451 (2002)

    Article  Google Scholar 

  28. Reiland T.W.: Optimality conditions and duality in continuous programming I: convex programs and a theorem of the alternative. J. Math. Anal. Appl. 77, 297–325 (1980)

    Article  Google Scholar 

  29. Reiland T.W.: Optimality conditions and duality in continuous programming II: the linear problem revisited. J. Math. Anal. Appl. 77, 329–343 (1980)

    Article  Google Scholar 

  30. Reiland T.W., Hanson M.A.: Generalized Kuhn-Tucker conditions and duality for continuous nonlinear programming problems. J. Math. Anal. Appl. 74, 578–598 (1980)

    Article  Google Scholar 

  31. Rojas-Medar M.A., Brandao J.V., Silva G.N.: Nonsmooth continuous-time optimization problems: sufficient conditions. J. Math. Anal. Appl. 227, 305–318 (1998)

    Article  Google Scholar 

  32. Schechter M.: Duality in continuous linear programming. J. Math. Anal. Appl. 37, 130–141 (1972)

    Article  Google Scholar 

  33. Schaible S.: Fractional programming: applications and algorithms. Eur. J. Oper. Res. 7, 111–120 (1981)

    Article  Google Scholar 

  34. Schaible S.: Fractional programming. Zeitschrift für Oper. Res. 27, 39–54 (1983)

    Google Scholar 

  35. Schaible S., Shi J.: Recent developments in fractional programming: single-ratio and max– min case. In: Takahashi, W., Tanaka, T. (eds) Nonlinear Analysis and Convex Analysis, pp. 493–506. Yokohama Publishers, Yokohama (2004)

    Google Scholar 

  36. Singh C.: A sufficient optimality criterion in continuous time programming for generalized convex functions. J. Math. Anal. Appl. 62, 506–511 (1978)

    Article  Google Scholar 

  37. Singh C., Farr W.H.: Saddle-point optimality criteria of continuous time programming without differentiability. J. Math. Anal. Appl. 59, 442–453 (1977)

    Article  Google Scholar 

  38. Stancu-Minasian I.M.: Fractional Programming: Theory, Methods and Applications. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  39. Stancu-Minasian I.M., Tigan S.: Continuous time linear-fractional programming: the minimum-risk approach. Rairo Oper. Res. 34, 397–409 (2000)

    Article  Google Scholar 

  40. Tyndall W.F.: A duality theorem for a class of continuous linear programming problems. SIAM J. Appl. Math. 15, 644–666 (1965)

    Article  Google Scholar 

  41. Tyndall W.F.: An extended duality theorem for continuous linear programming problems. SIAM J. Appl. Math. 15, 1294–1298 (1967)

    Article  Google Scholar 

  42. Weiss G.: A simplex based algorithm to solve separated continuous linear programs. Math. Programm. Ser. A 115, 151–198 (2008)

    Article  Google Scholar 

  43. Wen C.-F., Lur Y.-Y., Wu Y.-K.: A recurrence method for a special class of continuous time linear programming problems. J. Glob. Optim. 47, 83–106 (2010)

    Article  Google Scholar 

  44. Wen C.-F., Lur Y.-Y., Guu S.-M., Lee E.S.: On a recurrence algorithm for continuous-time linear fractional programming problems. Comput. Math. Appl. 59, 829–852 (2010)

    Article  Google Scholar 

  45. Wen C.-F., Wu H.-C.: Using the dinkelbach-type algorithm to solve the continuous-time linear fractional programming problems. J. Glob. Optim. 49, 237–263 (2011)

    Article  Google Scholar 

  46. Zalmai G.J.: Duality for a class of continuous-time homogeneous fractional programming problems. Z. Oper. Res. Ser. A-B 30, 43–48 (1986)

    Google Scholar 

  47. Zalmai G.J.: Duality for a class of continuous-time fractional programming problems. Utilitas Mathematica 31, 209–218 (1987)

    Google Scholar 

  48. Zalmai G.J.: Optimality conditions and duality for a class of continuous-time generalized fractional programming problems. J. Math. Anal. Appl. 153, 365–371 (1990)

    Google Scholar 

  49. Zalmai G.J.: Continuous-time generalized fractional programming. Optimization 36, 195–217 (1996)

    Article  Google Scholar 

  50. Zalmai G.J.: Optimality conditions and duality models for a class of nonsmooth constrained fractional optimal control problems. J. Math. Anal. Appl. 210, 114–149 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsien-Chung Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, CF., Wu, HC. Using the parametric approach to solve the continuous-time linear fractional max–min problems. J Glob Optim 54, 129–153 (2012). https://doi.org/10.1007/s10898-011-9751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9751-9

Keywords

Navigation