Abstract
In this research paper we present an immunological algorithm (IA) to solve global numerical optimization problems for high-dimensional instances. Such optimization problems are a crucial component for many real-world applications. We designed two versions of the IA: the first based on binary-code representation and the second based on real values, called opt-IMMALG01 and opt-IMMALG, respectively. A large set of experiments is presented to evaluate the effectiveness of the two proposed versions of IA. Both opt-IMMALG01 and opt-IMMALG were extensively compared against several nature inspired methodologies including a set of Differential Evolution algorithms whose performance is known to be superior to many other bio-inspired and deterministic algorithms on the same test bed. Also hybrid and deterministic global search algorithms (e.g., DIRECT, LeGO, PSwarm) are compared with both IA versions, for a total 39 optimization algorithms.The results suggest that the proposed immunological algorithm is effective, in terms of accuracy, and capable of solving large-scale instances for well-known benchmarks. Experimental results also indicate that both IA versions are comparable, and often outperform, the state-of-the-art optimization algorithms.
Similar content being viewed by others
References
Aiex R.M., Resende M.G.C., Ribeiro C.C.: TTTPLOTS: a perl program to create time-to-target plots. Optim. Lett. 1, 355–366 (2007)
Aiex R.M., Resende M.G.C., Ribeiro C.C.: Probability distribution of solution time in GRASP: an experimental investigation. J. Heuristics 8, 343–373 (2002)
Angeline P.J.: Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds) Evolutionary programming, vol. 7, pp. 601–610. Springer-Verlang, Berlin (1998)
Caponetto R., Fortuna L., Fazzino S., Xibilia M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evolut. Comput. 7(3), 289–304 (2003)
Cassioli, A., Di Lorenzo, D., Locatelli, M., Schoen, F., Sciandrone, M.: Machine Learning for Global Optimization. Comput. Optim. Appl. doi:10.1007/s10589-010-9330-x accepted August (2010)
Chambers J.M., Cleveland W.S., Kleiner B., Tukey P.A.: Graphical Models for Data Analysis. Chapman & Hall, London (1983)
Chellapilla K.: Combining mutation operators in evolutionary programming. IEEE Trans. Evolut. Comput. 2, 91–96 (1998)
Cutello, V., Narzisi, G., Nicosia, G., Pavone, M.: An immunological algorithm for global numerical optimization. In: Proceedings of the of the Seventh International Conference on Artificial Evolution (EA’05), vol. 3871, 284–295. LNCS (2005)
Cutello, V., Narzisi, G., Nicosia, G., Pavone, M.: Clonal selection algorithms: a comparative case study using effective mutation potentials. In: Proceedings of the Fourth International Conference on Artificial Immune Systems (ICARIS’05), vol. 3627, pp. 13–28. LNCS (2005)
Cutello, V., Nicosia, G., Pavone, M.: A hybrid immune algorithm with information gain for the graph coloring problem. In: Proceedings of Genetic and Evolutionary Computation COnference (GECCO’03), vol. 2723, pp. 171–182. LNCS (2003)
Cutello, V., Nicosia, G., Pavone, M.: Exploring the capability of immune algorithms: a characterization of hypermutation operators. In: Proceedings of the Third International Conference on Artificial Immune Systems (ICARIS’04), vol. 3239, pp. 263–276. LNCS (2004)
Cutello, V., Nicosia, G., Pavone, M.: An immune algorithm with hyper-macromutations for the Dill’s 2D hydrophobic–hydrophilic model. In: Proceedings of Congress on Evolutionary Computation (CEC’04), vol. 1, pp. 1074–1080. IEEE Press, New York (2004)
Cutello V., Nicosia G., Pavone M.: An immune algorithm with stochastic aging and Kullback entropy for the chromatic number problem. J. Comb. Optim. 14(1), 9–33 (2007)
Cutello, V., Nicosia, G., Pavone, M., Narzisi, G.: Real coded clonal selection algorithm for unconstrained global numerical optimization using a hybrid inversely proportional hypermutation operator. In: Proceedings of the 21st Annual ACM Symposium on Applied Computing (SAC’06), vol. 2, pp. 950–954 (2006)
Cutello V., Nicosia G., Pavone M., Timmis J.: An immune algorithm for protein structure prediction on lattice models. IEEE Trans. Evolut. Comput. 11(1), 101–117 (2007)
Dasgupta, D.: Advances in artificial immune systems. IEEE Comput. Intell. Mag. 40–49 (2006)
Dasgupta D., Niño F.: Immunological Computation: Theory and Applications. CRC Press, Taylor & Francis Group, Boca Raton (2009)
Davies M., Secker A., Freitas A., Timmis J., Clark E., Flower D.: Alignment-independent techniques for protein classification. Curr. Proteomics 5(4), 217–223 (2008)
De Castro L.N., Von Zuben F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. Evolut. Comput. 6(3), 239–251 (2002)
Feo T.A., Resende M.G.C., Smith S.H.: A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42, 860–878 (1994)
Finkel, D.E.: DIRECT optimization algorithm user guide. Technical report, CRSC N.C. State University. ftp://ftp.ncsu.edu/pub/ncsu/crsc/pdf/crsc-tr03-11.pdf (March 2003)
Floudas, C.A., Pardalos, P.M. (eds): Encyclopedia of Optimization. Springer, Berlin (2009)
Garrett S.: How do we evaluate artificial immune systems?. Evolut. Comput. 13(2), 145–178 (2005)
Goldberg D.E.: The Design of Innovation Lessons from and for Competent Genetic Algorithms, vol. 7. Kluwer Academic Publisher, Boston (2002)
Goldberg, D.E., Voessner, S.: Optimizing global-local search hybrids. In: Genetic and Evolutionary Computation Conference (GECCO’99), pp. 220–228 (1999)
Hart W.E., Krasnogor N., Smith J.E.: Recent Advances in Memetic Algorithms, Series in Studies in Fuzziness and Soft Computing. Springer, Berlin (2005)
Jones D.R., Perttunen C.D., Stuckman B.E.: Lipschitzian optimization without the Lipchitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)
Karaboga D., Baturk B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)
Lozano M., Herrera F., Krasnogor N., Molina D.: Real-coded Memetic algorithms with crossover hill-climbing. Evolut. Comput. 12(3), 273–302 (2004)
Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello C.: A comparative study of differential evolution variants for global optimization. In: Genetic and Evolutionary Computation Conference (GECCO’06), vol. 1, pp. 485–492 (2006)
Noman N., Iba H.: Enhancing differential evolution performance with local search for high dimensional function optimization. In: Genetic and Evolutionary Computation Conference (GECCO’05), pp. 967–974 (2005)
Pardalos P.M., Resende M.: Handbook of Applied Optimization. Oxford University Press, Oxford (2002)
Price K.V., Storn M., Lampien J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Berlin (2005)
Smith S., Timmis J.: Immune network inspired evolutionary algorithm for the diagnosis of Parkinsons disease. Biosystems 94(1–2), 34–46 (2008)
Storn R., Price K.V.: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)
Timmis J.: Artificial immune systems—today and tomorrow. Nat. Comput. 6(1), 1–18 (2007)
Timmis J., Hart E.: Application areas of AIS: the past, present and the future. J. Appl. Soft Comput. 8(1), 191–201 (2008)
Timmis, J., Hart, E., Hone, A., Neal, M., Robins, A., Stepney, S., Tyrrell A.: Immuno-engineering. In: Proceedings of the international conference on Biologically Inspired Collaborative Computing (IFIP’09), vol. 268, pp. 3–17. IEEE Press, New York (2008)
Timmis, J., Kelsey J.: Immune inspired somatic contiguous hypermutation for function optimization. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’03), vol. 2723, pp. 207–218. LNCS (2003)
Vaz A.I.F., Vicente L.N.: A particle swarm pattern search method for bound constrained global optimization. J. Global Optim. 39, 197–219 (2007)
Versterstrøm, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Congress on Evolutionary Computing (CEC’04), vol. 1, pp. 1980–1987 (2004)
Yao X., Liu Y., Lin G.M.: Evolutionary programming made faster. IEEE Trans. Evolut. Comput. 3(2), 82–102 (1999)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pavone, M., Narzisi, G. & Nicosia, G. Clonal selection: an immunological algorithm for global optimization over continuous spaces. J Glob Optim 53, 769–808 (2012). https://doi.org/10.1007/s10898-011-9736-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-011-9736-8