Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A genetic algorithm for a global optimization problem arising in the detection of gravitational waves

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The detection of gravitational waves is a long-awaited event in modern physics and, to achieve this challenging goal, detectors with high sensitivity are being used or are under development. In order to extract gravitational signals emitted by coalescing binary systems of compact objects (neutron stars and/or black holes), from noisy data obtained by interferometric detectors, the matched filter technique is generally used. Its computational kernel is a box-constrained global optimization problem with many local solutions and a highly nonlinear and expensive objective function, whose derivatives are not available. To tackle this problem, we designed a real-coded genetic algorithm that exploits characteristic features of the problem itself; special attention was devoted to the choice of the initial population and of the recombination operator. Computational experiments showed that our algorithm is able to compute a reasonably accurate solution of the optimization problem, requiring a much smaller number of function evaluations than the grid search, which is generally used to solve this problem. Furthermore, the genetic algorithm largely outperforms other global optimization algorithms on significant instances of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thorne K.S.: Gravitational radiation. In: Hawking, S.W., Israel, W. (eds) 300 Years of Gravitation, pp. 330–458. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  2. Babak S., Balasubramanian R., Churches D., Cokelaer T., Sathyaprakash B.S.: A template bank to search for gravitational waves from inspiralling compact binaries I: physical models. Class. Quantum Grav. 23, 5477–5504 (2006)

    Article  Google Scholar 

  3. Mohanty S.D.: Hierarchical search strategy for the detection of gravitational waves from coalescing binaries: extension to post-newtonian waveforms. Phys. Rev. D 57(2), 630–658 (1998)

    Article  Google Scholar 

  4. Sengupta, A.S., Dhurandhar, S., Lazzarini, A.: Faster implementation of the hierarchical search algorithm for detection of gravitational waves from inspiraling compact binaries. Phys. Rev. D 67(8), 082,004 (2003)

    Article  Google Scholar 

  5. Milano L., Barone F., Milano M.: Time domain amplitude and frequency detection of gravitational waves from coalescing binaries. Phys. Rev. D 55(8), 4537–4554 (1997)

    Article  Google Scholar 

  6. Barrón C., Gómez S., Romero D., Saavedra A.: A genetic algorithm for Lennard–Jones atomic clusters. Appl. Math. Lett. 12(7), 85–90 (1999)

    Article  Google Scholar 

  7. Papoulis A.: Probability, Random Variables, and Stochastic Processes. 3rd edn. McGraw-Hill, New York (1991)

    Google Scholar 

  8. Sathyaprakash B.S., Dhurandhar S.V.: Choice of filters for the detection of gravitational waves from coalescing binaries. Phys. Rev. D 44(12), 3819–3834 (1991)

    Article  Google Scholar 

  9. Dhurandhar S.V., Sathyaprakash B.S.: Choice of filters for the detection of gravitational waves from coalescing binaries. II. Detection in colored noise. Phys. Rev. D 49(4), 1707–1722 (1994)

    Article  Google Scholar 

  10. Allen, B., et al.: LAL Software Documentation. Revision 1.44 (2005). Available at http://www.lsc-group.phys.uwm.edu/lal/

  11. Mohanty S.D., Dhurandhar S.V.: Hierarchical search strategy for the detection of gravitational waves from coalescing binaries. Phys. Rev. D 54(12), 7108–7128 (1996)

    Article  Google Scholar 

  12. Blanchet L., Rlyer B., Wiseman A.G.: Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order. Class. Quantum Grav. 13, 575–584 (1996)

    Article  Google Scholar 

  13. Holland J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  14. Michalewicz Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn. Springer, New York (1998)

    Google Scholar 

  15. Herrera F., Lozano M., Verdegay J.L.: Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artif. Intell. Rev. 12(4), 265–319 (1998)

    Article  Google Scholar 

  16. Maaranen H., Miettinen K., Penttinen A.: On initial populations of a genetic algorithm for continuous optimization problems. J. Glob. Optim. 37(3), 405–436 (2007)

    Article  Google Scholar 

  17. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds): Evolutionary Computation 1: Basic Algorithms and Operators. IOP Publishing, Bristol (2000)

    Google Scholar 

  18. De Jong K.A.: Evolutionary Computation: A Unified Approach. MIT press, Cambridge (2006)

    Google Scholar 

  19. Herrera F., Lozano M., Sánchez A.M.: A taxonomy for the crossover operator for real-coded genetic algorithms: an experimental study. Int. J. Intell. Syst. 18(3), 309–338 (2003)

    Article  Google Scholar 

  20. Rasio A.R., Shapiro S.L.: Coalescing binary neutron stars. Class. Quantum Grav. 16(6), R1–R29 (1999)

    Article  Google Scholar 

  21. Matsumoto M., Nishimura T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comp. Sim. 8(1), 3–30 (1998)

    Article  Google Scholar 

  22. Mitra S., Dhurandhar S.V., Finn L.S.: Improving the efficiency of the detection of gravitational wave signals from inspiraling compact binaries: Chebyshev interpolation. Phys. Rev. D 72, 102,001 (2005)

    Article  Google Scholar 

  23. Back T.: Mutation parameters. In: Back, T., Fogel, D.B., Michalewicz, Z. (eds) Evolutionary Computation 2: Advanced Algorithms and Operators, pp. 142–151. IOP Publishing, Bristol (2000)

    Google Scholar 

  24. Vajda, P., Eiben, A., Hordijk, W.: Parameter control methods for selection operators in genetic algorithms. In: Parallel problem solving from nature—PPSN X, Lecture Notes in Computer Science, pp. 620–630. Springer, Berlin/Heidelberg (2008)

  25. Price W.: A controlled random search procedure for global optimisation. Comput. J. 20, 367–370 (1977)

    Article  Google Scholar 

  26. Vaz A.I.F., Vicente L.N.: A particle swarm pattern search method for bound constrained global optimization. J. Glob. Optim. 39(2), 197–219 (2007)

    Article  Google Scholar 

  27. Jones D.R., Perttunen C.D., Stuckman B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  Google Scholar 

  28. Liuzzi, G., Lucidi, S., Piccialli, V.: A direct-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Optim. Appl. (2008)

  29. Strongin R.G.: Algorithms for multi-extremal mathematical programming problems employing the set of joint space-filling curves. J. Glob. Optim. 2(4), 357–378 (1992)

    Article  Google Scholar 

  30. Strongin R.G., Sergeyev Y.D.: Global Optimization with Non-Convex Constraints Sequential and Parallel Algorithms, Nonconvex Optimization and its Applications vol. 45. Kluwer, Dordrecht (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela di Serafino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

di Serafino, D., Gomez, S., Milano, L. et al. A genetic algorithm for a global optimization problem arising in the detection of gravitational waves. J Glob Optim 48, 41–55 (2010). https://doi.org/10.1007/s10898-010-9525-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9525-9

Keywords

Navigation