Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Mixed quasi complementarity problems in topological vector spaces

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we introduce and consider a new class of complementarity problems, which is called the mixed quasi complementarity problems in a topological vector space. We show that the mixed quasi complementarity problems are equivalent to the mixed quasi variational inequalities. Using the KKM mapping theorem, we study the existence of a solution of the mixed quasi variational inequalities and mixed quasi complementarity problems. Several special cases are also discussed. Results obtained in this paper can be viewed as extension and generalization of the previously known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aslam Noor M.: Mixed quasi variational inequalities. Appl. Math. Comput. 146, 553–578 (2003)

    Article  Google Scholar 

  2. Aslam Noor M.: Fundamentals of mixed quasi variational inequalities. Inter. J. Pure Appl. Math. 15, 138–257 (2004)

    Google Scholar 

  3. Aslam Noor M.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004)

    Article  Google Scholar 

  4. Aslam Noor M.: Implicit Wiener-Hopf equations and quasi variational inequalities. Albanian J. Math. 2, 15–25 (2008)

    Google Scholar 

  5. Aslam Noor M., Inayat Noor K., Rassias Th.M.: Some aspects of variational inequalities. J. Comput. Appl. Math. 47, 285–312 (1993)

    Article  Google Scholar 

  6. Aslam Noor M., Yao Y., Liou Y.C.: Extragradient method for equilibrium problems and variational inequalities. Albanian J. Math. 2, 125–138 (2008)

    Google Scholar 

  7. Baiochhi C., Capelo A.: Variational and Quasivariational Inequalities. Wiley, New York (1984)

    Google Scholar 

  8. Bnouhachem, A., Aslam Noor, M.: A new predictor-corrector method for pseudomonotone nonlinear complementarity problem. Int. J. Comput. Math. (2007), in press

  9. Bnouhachem A., Aslam Noor M.: Numerical method for general mixed quasi variational inequalities. Appl. Math. Comput. 204, 27–36 (2008)

    Article  Google Scholar 

  10. Cho Y.J., Li J., Huang N.J.: Solvability of implicit complementarity problems. Math. Comput. Modell. 45, 1001–1009 (2007)

    Article  Google Scholar 

  11. Cottle R.W.: Complementarity and variational problems. Sympos. Math. 19, 177–208 (1976)

    Google Scholar 

  12. Cottle R.W., Dantzig G.B.: Complementarity pivot theory of mathematical programming. Linear Algeb. Appl. 1, 163–185 (1968)

    Google Scholar 

  13. Fakhar M., Zafarani J.: Generalized vector equilibrium problems for pseudomonotone multivalued bifunctions. J. Optim. Theory Appl. 126, 109–124 (2005)

    Article  Google Scholar 

  14. Farajzadeh A.P., Amini-Harandi A., Aslam Noor M.: On the generalized vector F-implicit complementarity problems and vector F-implicit variational inequality problems. Math. Comm. 12, 203–211 (2007)

    Google Scholar 

  15. Glowinski R., Lions J.L., Tremolieres R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    Google Scholar 

  16. Hunag, N.J., Li, J., O’Regan, D.: Generalized f-complementarity problems in Banch Spaces, Non. Anal. (2007). doi:10.1016/j.na.2007.04.022

  17. Itoh S., Takahashi W., Yanagi K.: Variational inequalities and complementarity problems. J. Math. Soc. Jpn. 30, 23–28 (1978)

    Article  Google Scholar 

  18. Karamardian S.: Generalized complementarity problems. J. Optim. Theory Appl. 8, 223–239 (1971)

    Article  Google Scholar 

  19. Lemke C.E.: Bimatrix equilibrium point and mathematical programming. Manag. Sci. 11, 681–689 (1965)

    Article  Google Scholar 

  20. Mosco U.: Implicit Variational Problems and Quasi Variational Inequalities. In: Nonlinear Operators and the Calculus of Variations, Lecture Notes in Mathematics, vol. 543, pp. 83–156. Springer, Berlin (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aslam Noor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farajzadeh, A.P., Aslam Noor, M. & Zainab, S. Mixed quasi complementarity problems in topological vector spaces. J Glob Optim 45, 229–235 (2009). https://doi.org/10.1007/s10898-008-9368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-008-9368-9

Keywords

Mathematics Subject Classification (2000)

Navigation