Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Generalizations of vector quasivariational inclusion problems with set-valued maps

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Existence theorems are given for the problem of finding a point (z 0,x 0) of a set E × K such that \((z_0,x_0)\in B(z_0,x_0)\times A(z_0,x_0)\) and, for all \(\eta\in A(z_0,x_0), (F(z_0,x_0,x_0,\eta), C(z_0,x_0,x_0,\eta))\in \alpha\) where α is a relation on 2Y (i.e., a subset of 2Y × 2Y), \(A : E\times K\longrightarrow 2^K,\) \(B : E\times K\longrightarrow 2^E, C : E\times K\times K\times K\longrightarrow 2^Y\) and \(F : E\times K\times K\times K\longrightarrow 2^Y\) are some set-valued maps, and Y is a topological vector space. Detailed discussions are devoted to special cases of α and C which correspond to several generalized vector quasi-equilibrium problems with set-valued maps. In such special cases, existence theorems are obtained with or without pseudomonotonicity assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ansari Q.H. and Flores-Bazan F. (2003). Generalized vector quasi-equilibrium problems with applications. J. Math. Anal. Appl. 277: 246–256

    Article  Google Scholar 

  2. Ansari Q.H. and Yao J.-C. (1999). An existence result for the generalized vector equilibrium problem. Appl. Math. Lett. 12: 53–56

    Article  Google Scholar 

  3. Aubin J.P. (1979). Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam

    Google Scholar 

  4. Blum E. and Oettli W. (1994). From optimization and variational inequalities to equilibrium problems. The Math. Stud. 63: 123–145

    Google Scholar 

  5. Chan D. and Pang J.S. (1982). The generalized quasi-variational inequality problems. Math. Oper. Res. 7: 211–222

    Article  Google Scholar 

  6. Chang S., Lee B.S., Wu X., Cho Y.J. and Lee G.M. (1996). On the generalized quasi-variational inequality problems. J. Math. Anal. Appl. 203: 686–711

    Article  Google Scholar 

  7. Chen M.-P., Lin L.-J. and Park S. (2003). Remarks on generalized quasi-equilibrium problems. Nonlinear Anal. 52: 433–444

    Article  Google Scholar 

  8. Ding X.P. and Park J.Y. (2004). Generalized vector equilibrium problems in generalized convex spaces. J. Optm. Theory Appl. 120: 327–353

    Article  Google Scholar 

  9. Ding X.P. and Tarafdar E. (2000). Generalized vector variational-like inequalities with C x −η-pseudomonotone set-valued mappings. In: Giannessi, F. (eds) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp 125–140. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  10. Fakhar M. and Zafarani J. (2005). Generalized vector equilibrium problems for pseudomonotone multivalued bifunctions. J. Optm. Theory Appl. 126: 109–124

    Article  Google Scholar 

  11. Fan K. (1961). A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142: 305–310

    Article  Google Scholar 

  12. Ferro F. (1982). Minimax type theorems for n-valued functions. Ann Math. Pura Appl. 32: 113–130

    Google Scholar 

  13. Fu J.Y. (2000). Generalized vector quasi-equilibrium problems. Math. Methods Oper. Res. 52: 57–64

    Article  Google Scholar 

  14. Fu J.Y. (2003). Symmetric vector quasi-equilibrium problems. J. Math. Anal. Appl. 285: 708–713

    Article  Google Scholar 

  15. Fu J.-Y. and Wan A.-H. (2002). Generalized vector equilibrium problems with set-valued mappings. Math. Methods Oper. Res. 56: 259–268

    Article  Google Scholar 

  16. Hai N.X. and Khanh P.K. (2007). The solution existence of general variational inclusion problems. J. Math. Anal. Appl. 328: 1268–1277

    Article  Google Scholar 

  17. Hou S.H., Yu H. and Chen G.Y. (2003). On vector quasi-equilibrium problems with set-valued maps. J. Optim. Theory Appl. 119: 485–498

    Article  Google Scholar 

  18. Jahn J. (1986). Mathematical Vector Optimization in Partially Ordered Linear Spaces. Verlag Peter Lang GmbH, Frankfurt am Main

    Google Scholar 

  19. Konnov I.V. and Yao J.C. (1999). Existence of solutions for generalized vector equilibrium problems. J. Math. Anal. Appl. 233: 328–335

    Article  Google Scholar 

  20. Kum S.H. (1994). A generalization of generalized quasi-variational inequalities. J. Math. Anal. Appl. 182: 158–164

    Article  Google Scholar 

  21. Lee G.M., Lee B.S. and Chang S.S. (1996). On vector quasivariational inequalities. J. Math. Anal. Appl. 203: 626–638

    Article  Google Scholar 

  22. Li S.L., Teo K.L. and Yang X.Q. (2005). Generalized vector quasi-equilibrium problems. Math. Methods Oper. Res. 61: 385–397

    Article  Google Scholar 

  23. Lin L.J. (1996). Pre-vector variational inequalities. Bull. Austr. Math. Soc. 53: 63–70

    Google Scholar 

  24. Lin L.J. (2005). Existence theorems of simultaneous equilibrium problems and generalized vector quasi-saddle points. J. Glob. Optim. 32: 613–632

    Article  Google Scholar 

  25. Lin L.J., Ansari Q.H. and Wu J.Y. (2003). Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems. J. Optim. Theory Appl. 117: 121–137

    Article  Google Scholar 

  26. Lin L.-J. and Chen H.-L. (2005). The study of KKM theorems with applications to vector equilibrium problems and implicit vector variational inequalities problems. J. Glob. Optim. 32: 135–157

    Article  Google Scholar 

  27. Lin L.-J. and Cheng S.F. (2002). Nash-type equilibrium theorems and competitive Nash-type equilibrium theorems. Comput. Math. Appl. 44: 1369–1378

    Article  Google Scholar 

  28. Lin L.J. and Park S. (1998). On some generalized quasi-equilibrium problems. J. Math. Anal. Appl. 224: 167–181

    Article  Google Scholar 

  29. Lin L.-J. and Tsai Y.-L. (2005). On vector quasi-saddle points of set-valued maps. In: Eberkard, A., Hadjisavvas, N. and Luc, D.T. (eds) Generalized Convexity, Generalized Monotonicity and Applications., pp 311–319. Springer-Verlag, New York

    Chapter  Google Scholar 

  30. Lin L.J., Yu Z.T. and Kassay G. (2002). Existence of equilibria for multivalued mappings and its application to vectorial equilibria. J. Optim. Theory Appl. 114: 189–208

    Article  Google Scholar 

  31. Luc D.T. (1989). Theory of Vector Optimization. Lectures Notes in Economics and Mathematical Systems, vol 319. Springer-Verlag, Berlin

    Google Scholar 

  32. Luc D.T. and Tan N.X. (2004). Existence conditions in variational inclusions with constraints. Optim. 53: 505–515

    Article  Google Scholar 

  33. Massey W.S. (1970). Singular Homology Theory. Springer-Verlag, New York

    Google Scholar 

  34. Oettli W. and Schläger D. (1997). Generalized vectorial equilibria and generalized monotonicity. In: Brokate, M. and Siddiqi, A.H. (eds) Functional Analysis with Current Applications, pp 145–154. Longman, London

    Google Scholar 

  35. Oettli W. and Schläger D. (1998). Existence of equilibria for monotone multivalued mappings. Math. Methods Oper. Res. 48: 219–228

    Article  Google Scholar 

  36. Park S. (1992). Some coincidence theorems on acyclic multifunctions and applications to KKM theory. In: Tan, K.-K. (eds) Fixed Point Theory and Applications, pp 248–277. World Sci, NJ

    Google Scholar 

  37. Sach P.H. and Tuan L.A. (2007). Existence results for set-valued vector quasi-equilibrium problems. J. Optim. Theory Appl. 133: 229–240

    Article  Google Scholar 

  38. Song W. (2000). Vector equilibrium problems with set-valued mapping. In: Giannessi, F. (eds) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp 403–422. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  39. Tan N.X. (2004). On the existence of solutions of quasivariational inclusion problem. J. Optim. Theory Appl. 123: 619–638

    Article  Google Scholar 

  40. Tanaka T. (1994). Generalized quasiconvexities, cone saddle points and minimax theorems for vector-valued functions. J. Optim. Theory Appl. 81: 355–377

    Article  Google Scholar 

  41. Tian G. (1993). Generalized quasi-variational-like inequality problem. Math. Oper. Res. 18: 752–764

    Article  Google Scholar 

  42. Tuan L.A. and Sach P.H. (2004). Existence of solutions of generalized quasivariational inequalities with set-valued maps. Acta Math. Vietnam. 29(3): 309–316

    Google Scholar 

  43. Tuan L.A. and Sach P.H. (2005). Existence theorems for some generalized quasivariational inclusion problems. Vietnam J. Math. 33(1): 111–122

    Google Scholar 

  44. Wu X., Thompson B. and Yuan G.X.-Z. (2003). Quasiequilibrium problems in H-spaces. Comput. Math. Appl. 45: 1629–1636

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Huu Sach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sach, P.H., Tuan, L.A. Generalizations of vector quasivariational inclusion problems with set-valued maps. J Glob Optim 43, 23–45 (2009). https://doi.org/10.1007/s10898-008-9289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-008-9289-7

Keywords

Navigation