Abstract
Existence theorems are given for the problem of finding a point (z 0,x 0) of a set E × K such that \((z_0,x_0)\in B(z_0,x_0)\times A(z_0,x_0)\) and, for all \(\eta\in A(z_0,x_0), (F(z_0,x_0,x_0,\eta), C(z_0,x_0,x_0,\eta))\in \alpha\) where α is a relation on 2Y (i.e., a subset of 2Y × 2Y), \(A : E\times K\longrightarrow 2^K,\) \(B : E\times K\longrightarrow 2^E, C : E\times K\times K\times K\longrightarrow 2^Y\) and \(F : E\times K\times K\times K\longrightarrow 2^Y\) are some set-valued maps, and Y is a topological vector space. Detailed discussions are devoted to special cases of α and C which correspond to several generalized vector quasi-equilibrium problems with set-valued maps. In such special cases, existence theorems are obtained with or without pseudomonotonicity assumptions.
Similar content being viewed by others
References
Ansari Q.H. and Flores-Bazan F. (2003). Generalized vector quasi-equilibrium problems with applications. J. Math. Anal. Appl. 277: 246–256
Ansari Q.H. and Yao J.-C. (1999). An existence result for the generalized vector equilibrium problem. Appl. Math. Lett. 12: 53–56
Aubin J.P. (1979). Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam
Blum E. and Oettli W. (1994). From optimization and variational inequalities to equilibrium problems. The Math. Stud. 63: 123–145
Chan D. and Pang J.S. (1982). The generalized quasi-variational inequality problems. Math. Oper. Res. 7: 211–222
Chang S., Lee B.S., Wu X., Cho Y.J. and Lee G.M. (1996). On the generalized quasi-variational inequality problems. J. Math. Anal. Appl. 203: 686–711
Chen M.-P., Lin L.-J. and Park S. (2003). Remarks on generalized quasi-equilibrium problems. Nonlinear Anal. 52: 433–444
Ding X.P. and Park J.Y. (2004). Generalized vector equilibrium problems in generalized convex spaces. J. Optm. Theory Appl. 120: 327–353
Ding X.P. and Tarafdar E. (2000). Generalized vector variational-like inequalities with C x −η-pseudomonotone set-valued mappings. In: Giannessi, F. (eds) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp 125–140. Kluwer Academic Publishers, Dordrecht
Fakhar M. and Zafarani J. (2005). Generalized vector equilibrium problems for pseudomonotone multivalued bifunctions. J. Optm. Theory Appl. 126: 109–124
Fan K. (1961). A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142: 305–310
Ferro F. (1982). Minimax type theorems for n-valued functions. Ann Math. Pura Appl. 32: 113–130
Fu J.Y. (2000). Generalized vector quasi-equilibrium problems. Math. Methods Oper. Res. 52: 57–64
Fu J.Y. (2003). Symmetric vector quasi-equilibrium problems. J. Math. Anal. Appl. 285: 708–713
Fu J.-Y. and Wan A.-H. (2002). Generalized vector equilibrium problems with set-valued mappings. Math. Methods Oper. Res. 56: 259–268
Hai N.X. and Khanh P.K. (2007). The solution existence of general variational inclusion problems. J. Math. Anal. Appl. 328: 1268–1277
Hou S.H., Yu H. and Chen G.Y. (2003). On vector quasi-equilibrium problems with set-valued maps. J. Optim. Theory Appl. 119: 485–498
Jahn J. (1986). Mathematical Vector Optimization in Partially Ordered Linear Spaces. Verlag Peter Lang GmbH, Frankfurt am Main
Konnov I.V. and Yao J.C. (1999). Existence of solutions for generalized vector equilibrium problems. J. Math. Anal. Appl. 233: 328–335
Kum S.H. (1994). A generalization of generalized quasi-variational inequalities. J. Math. Anal. Appl. 182: 158–164
Lee G.M., Lee B.S. and Chang S.S. (1996). On vector quasivariational inequalities. J. Math. Anal. Appl. 203: 626–638
Li S.L., Teo K.L. and Yang X.Q. (2005). Generalized vector quasi-equilibrium problems. Math. Methods Oper. Res. 61: 385–397
Lin L.J. (1996). Pre-vector variational inequalities. Bull. Austr. Math. Soc. 53: 63–70
Lin L.J. (2005). Existence theorems of simultaneous equilibrium problems and generalized vector quasi-saddle points. J. Glob. Optim. 32: 613–632
Lin L.J., Ansari Q.H. and Wu J.Y. (2003). Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems. J. Optim. Theory Appl. 117: 121–137
Lin L.-J. and Chen H.-L. (2005). The study of KKM theorems with applications to vector equilibrium problems and implicit vector variational inequalities problems. J. Glob. Optim. 32: 135–157
Lin L.-J. and Cheng S.F. (2002). Nash-type equilibrium theorems and competitive Nash-type equilibrium theorems. Comput. Math. Appl. 44: 1369–1378
Lin L.J. and Park S. (1998). On some generalized quasi-equilibrium problems. J. Math. Anal. Appl. 224: 167–181
Lin L.-J. and Tsai Y.-L. (2005). On vector quasi-saddle points of set-valued maps. In: Eberkard, A., Hadjisavvas, N. and Luc, D.T. (eds) Generalized Convexity, Generalized Monotonicity and Applications., pp 311–319. Springer-Verlag, New York
Lin L.J., Yu Z.T. and Kassay G. (2002). Existence of equilibria for multivalued mappings and its application to vectorial equilibria. J. Optim. Theory Appl. 114: 189–208
Luc D.T. (1989). Theory of Vector Optimization. Lectures Notes in Economics and Mathematical Systems, vol 319. Springer-Verlag, Berlin
Luc D.T. and Tan N.X. (2004). Existence conditions in variational inclusions with constraints. Optim. 53: 505–515
Massey W.S. (1970). Singular Homology Theory. Springer-Verlag, New York
Oettli W. and Schläger D. (1997). Generalized vectorial equilibria and generalized monotonicity. In: Brokate, M. and Siddiqi, A.H. (eds) Functional Analysis with Current Applications, pp 145–154. Longman, London
Oettli W. and Schläger D. (1998). Existence of equilibria for monotone multivalued mappings. Math. Methods Oper. Res. 48: 219–228
Park S. (1992). Some coincidence theorems on acyclic multifunctions and applications to KKM theory. In: Tan, K.-K. (eds) Fixed Point Theory and Applications, pp 248–277. World Sci, NJ
Sach P.H. and Tuan L.A. (2007). Existence results for set-valued vector quasi-equilibrium problems. J. Optim. Theory Appl. 133: 229–240
Song W. (2000). Vector equilibrium problems with set-valued mapping. In: Giannessi, F. (eds) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp 403–422. Kluwer Academic Publishers, Dordrecht
Tan N.X. (2004). On the existence of solutions of quasivariational inclusion problem. J. Optim. Theory Appl. 123: 619–638
Tanaka T. (1994). Generalized quasiconvexities, cone saddle points and minimax theorems for vector-valued functions. J. Optim. Theory Appl. 81: 355–377
Tian G. (1993). Generalized quasi-variational-like inequality problem. Math. Oper. Res. 18: 752–764
Tuan L.A. and Sach P.H. (2004). Existence of solutions of generalized quasivariational inequalities with set-valued maps. Acta Math. Vietnam. 29(3): 309–316
Tuan L.A. and Sach P.H. (2005). Existence theorems for some generalized quasivariational inclusion problems. Vietnam J. Math. 33(1): 111–122
Wu X., Thompson B. and Yuan G.X.-Z. (2003). Quasiequilibrium problems in H-spaces. Comput. Math. Appl. 45: 1629–1636
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sach, P.H., Tuan, L.A. Generalizations of vector quasivariational inclusion problems with set-valued maps. J Glob Optim 43, 23–45 (2009). https://doi.org/10.1007/s10898-008-9289-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-008-9289-7