Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The semismooth approach for semi-infinite programming under the Reduction Ansatz

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We study convergence of a semismooth Newton method for generalized semi-infinite programming problems with convex lower level problems where, using NCP functions, the upper and lower level Karush-Kuhn-Tucker conditions of the optimization problem are reformulated as a semismooth system of equations. Nonsmoothness is caused by a possible violation of strict complementarity slackness. We show that the standard regularity condition for convergence of the semismooth Newton method is satisfied under natural assumptions for semi-infinite programs. In fact, under the Reduction Ansatz in the lower level and strong stability in the reduced upper level problem this regularity condition is satisfied. In particular, we do not have to assume strict complementary slackness in the upper level. Numerical examples from, among others, design centering and robust optimization illustrate the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Tal A. and Nemirovski A. (1999). Robust solutions of uncertain linear programs. Opera. Res. Lett. 25: 1–13

    Article  Google Scholar 

  2. Clarke F.H. (1983). Optimization and Nonsmooth Analysis. Wiley, New York

    Google Scholar 

  3. Floudas, C. A., Stein, O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming. SIAM J Optim (to appear)

  4. Goberna M.A. and López M.A. (1998). Linear Semi-infinite Optimization. Wiley, Chichester

    Google Scholar 

  5. Günzel, H., Jongen, H. Th., Stein, O.: Generalized semi-infinite programming: on generic local minimizers, AOR-Preprint 2/2007, Chair for Applications of OR, University of Karlsruhe (2007)

  6. Guerra Vazquez, F., Rückmann, J.-J., Stein, O., Still, G.: Generalized semi-infinite programming: a tutorial. J. Comput. Appl. Math. (to appear)

  7. Hettich R. and Kortanek K. (1993). Semi-infinite programming: theory, methods and applications. SIAM Rev. 35: 380–429

    Article  Google Scholar 

  8. Hettich R. and Still G. (1995). Second order optimality conditions for generalized semi-infinite programming problems. Optimization. 34: 195–211

    Article  Google Scholar 

  9. John, F.: Extremum problems with inequalities as subsidiary conditions, In: studies and essays, R. Courant Anniversary Volume, Interscience, New York 187–204 (1948)

  10. Jongen H.Th., Jonker P. and Twilt F. (1986). Critical sets in parametric optimization. Math. Programming 34: 333–353

    Article  Google Scholar 

  11. Jongen H.Th., Möbert T., Rückmann J.-J. and Tammer T. (1987). On inertia and Schur complement in optimization. Lin. Alg. Appl. 95: 97–109

    Article  Google Scholar 

  12. Jongen H.Th., Wetterling W. and Zwier G. (1987). On sufficient conditions for local optimality in semi-infinite programming. Optimization 18: 165–178

    Article  Google Scholar 

  13. Klatte D. and Kummer B. (2002). Nonsmooth Equations in Optimization. Kluwer, Dordrecht

    Google Scholar 

  14. Mifflin R. (1997). Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15: 959–972

    Article  Google Scholar 

  15. Ouellette D.V. (1981). Schur complements and statistics. Lin. Alg. Appl. 36: 187–295

    Article  Google Scholar 

  16. Qi L. and Jiang H. (1997). Semismooth KKT equations and convergence analysis of Newton and quasi-Newton methods for solving these equations. Math. Op. Res. 22: 301–325

    Article  Google Scholar 

  17. Qi L. and Sun J. (1993). A nonsmooth version of Newton’s Method. Math. Programming 58: 353–367

    Article  Google Scholar 

  18. Qi L., Wu S.-Y. and Zhou G. (2003). Semismooth Newton Methods for Solving Semi-infinite Problems. J. Global Optim. 27: 215–232

    Article  Google Scholar 

  19. Reemtsen R. and Görner S. (1998). Numerical methods for semi-infinite programming: a survey. In: Reemtsen, R. and Rückmann, J.-J. (eds) Semi-Infinite Programming, pp 195–275. Kluwer, Boston

    Google Scholar 

  20. Robinson S.M. (1982). Generalized Equations and their solutions, Part II, Applications to nonlinear programming. Math. Programming Stud. 19: 200–221

    Google Scholar 

  21. Stein, O.: On parametric semi-infinite optimization. PhD Thesis, University of Trier, Department of Mathematics (1997)

  22. Stein, O.: Bi-level strategies in semi-infinite programming. Kluwer (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Stein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, O., Tezel, A. The semismooth approach for semi-infinite programming under the Reduction Ansatz. J Glob Optim 41, 245–266 (2008). https://doi.org/10.1007/s10898-007-9228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9228-z

Keywords

AMS subject classifications 2000

Navigation