Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Interactive decisions and potential games

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The aim of this contribution is an overview on Potential Games. This class of games is special, in fact we can investigate their properties by a unique function: the potential function. We consider several types of potential games: exact, ordinal, bayesian and hierarchical. Some results are generalized to multicriteria decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basar T. and Olsder G.J. (1982). Dynamic Noncooperative Games. Academic Press, New York

    Google Scholar 

  2. Branzei R., Mallozzi L. and Tijs S. (2003). Supermodular games and potential games. J. math. Econ. 39: 39–49

    Article  Google Scholar 

  3. Briata, F., Moretti, S., Patrone, F., Tijs, S.: Printers: Non cooperative games from Tuic games, preprint (2006)

  4. Daniele, P., Maugeri, A.: Vector variational inequalities and a continuum modelling of traffic equilibrium problem. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, pp. 97–112. Kluwer Academic Publishers (2000)

  5. Daniele, P., Maugeri, A., Oettli, W.: Variational Inequalities and time dependent Traffic Equilibria C.R. Acad. Sci. Paris, 326, serie I (1998)

  6. Daniele P., Maugeri A. and Oettli W. (1999). Time dependent traffic equilibria. J. Optim. Th. Appl. 103(3): 543–555

    Article  Google Scholar 

  7. Facchini G., Van Megen F., Borm P. and Tijs S. (1997). Congestion models and weighted bayesian potential games. Theory and Decision 42: 193–206

    Article  Google Scholar 

  8. Peleg B., Tijs S., Borm P. and van Heumann R. (1996). Characterization of solutions for Bayesian games. Theory and Decision 40: 103–129

    Article  Google Scholar 

  9. Harsanyi, J.: Games with incomplete information played by bayesian players. Manage. Sci. 14, 159–182, 320–334, 486–502 (1967–1968)

    Google Scholar 

  10. Maugeri A. (1985). New classes of variational inequalities and applications to equilibrium problems. Methods Oper. Res. 53: 129–131

    Google Scholar 

  11. Margiocco M., Patrone F. and Pusillo L. (2002). On Tihkonov well-posedness of concave games and Cournot oligopoly. J. Optim. Theory Appl. 112: 361–369

    Article  Google Scholar 

  12. Margiocco M. and Pusillo L. (2006). (ϵ, k) Equilibria and Well Posedness. Int. Game Theory Rev. 8(1): 33–44

    Article  Google Scholar 

  13. Margiocco, M., Pusillo, L.: Potential Games and Well-posedness properties. Optimization (to appear)

  14. Margiocco, M., Pusillo, L.: Stackelberg Well-Posedness and Hierarchical Potential Games. Anna. Dyna. Games (to appear)

  15. Mallozzi L., Tijs S. and Voorneveld M. (2000). Infinite Hierarchical potential games. USSR J. Comp. Math. Math. Phys. J. Optimi. Theory Appl. 107: 287–296

    Google Scholar 

  16. Morgan J.  (1989). Constrained well-posed two-level optimization problems. In: Clarke, F.H., Dem’yanov, V.F. and Giannessi, F. (eds) Nonsmooth Optimization and Related Topics, pp 307–325. Plenum Press, New York

    Google Scholar 

  17. Monderer P. and Shapley L. (1996). Potential games. Games Econ. Behav. 14: 124–143

    Article  Google Scholar 

  18. Nash J.F. Jr (1950). Equilibrium points in n-person games. Proc. Nat. Acad. Sci. USA 36: 48–49

    Article  Google Scholar 

  19. Patrone F. (2006). Decisori (razionali) interagenti.Una introduzione alla Teoria dei Giochi, ed. University Press, Pisa

    Google Scholar 

  20. Pusillo L. (2001). Approximate Solutions and Tikhonov Well-posedness for Nash Equilibria. In: Giannessi F., Maugeri A., Pardalos P. (eds). Equilibrium Problems:Non smooth Optimization and Variational Inequality Models. Kluwer Academic Publishers, pp. 231–244

  21. Pusillo L.: Well posedness and optimization problems. In: Giannessi, F., Maugeri, A. (eds.) Variational Analysis and Applications. Springer (2005)

  22. Pusillo, L., Tijs, S.: Multicriteria Games and Potentials, preprint D.I.M.A. n.524 (2005)

  23. Rosenthal R.W. (1973). A class of games possessing pure strategy Nash equilibria. Int. J. Game Theory 2: 65–67

    Article  Google Scholar 

  24. Tijs S.: Introduction to Game Theory. Hindustan Book Agency (2003)

  25. von Stackelberg H. (1934). Marktform und Gleichgewitch. Springer, Vienna

    Google Scholar 

  26. Voorneveld, M.: Potential games and interactive decisions with multiple criteria. Ph.D. thesis CentER, Tilburg University (1999)

  27. Voorneveld M., Tijs S., Mallozzi L. (1999) Sequential production situations and potentials. In: Patrone, F., Garcia Jurado, I., Tijs, S. (eds.) Game Practice Book. Kluwer Academic Publishers, Boston (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Pusillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pusillo, L. Interactive decisions and potential games. J Glob Optim 40, 339–352 (2008). https://doi.org/10.1007/s10898-007-9209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9209-2

Keywords

AMS Classification

Navigation