Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A New Inclusion Function for Optimization: Kite – The One Dimensional Case

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper the kite inclusion function is presented for branch-and-bound type interval global optimization using at least gradient information. The basic idea comes from the simultaneous usage of the centered forms and the linear boundary value forms. We will show that the new technique is not worse and usually considerably better than these two. The best choice for the center of the kite inclusion will be given. The isotonicity and at least quadratical convergence hold and there is a pruning effect of the kite which is derived from the construction of the inclusion, thus more function evaluations are not needed to use it. A numerical investigation on large standard multiextremal test functions has been done to show the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld, G. and Herzberger, J. (1983), Introduction to Interval Computations, Academic Press, New York.

    Google Scholar 

  2. Baumann, E. (1988), Optimal centered forms, BIT, 28(1), 80–87.

    Google Scholar 

  3. Casado, L.G., García, I., Martínez, J.A. and Sergeyev, Ya.D. (2003), New interval analysis support functions using gradient information in a global minimization algorithm, J. Global Optimization, 25(4), 345–362.

    Google Scholar 

  4. Csallner, A.E., Csendes, T. and Markót, M.Cs. (2000), Multisection in interval branch-and-bound methods for global optimization - I. Theoretical results, J. Global Optimization, 16(4), 371–392.

    Google Scholar 

  5. Csendes, T. (2001), New subinterval selection criteria for interval global optimization, J. Global Optimization, 19(3), 307–327.

    Google Scholar 

  6. Csendes, T. and Ratz, D. (1997), Subdivision direction selection in interval methods for global optimization, SIAM J. Numerical Anal., 34(3), 922–938.

    Google Scholar 

  7. Hammer, R., Hocks, M., Kulisch, U. and Ratz, D. (1995), C++ Toolbox for Verified Computing I: Basic Numerical Problems: Theory, Algorithms, and Programs, Springer-Verlag, Berlin.

    Google Scholar 

  8. Hansen, E.R. (1992), Global Optimization Using Interval Analysis, Marcel Dekker, New York.

    Google Scholar 

  9. Kearfott, R.B. (1996), Rigorous Global Search: Continuous Problems, Kluwer, Boston.

    Google Scholar 

  10. Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C. and Rauch, M. (1993), C-XSC; A C++ Class Library for Extended Scientific Computing, Springer-Verlag, New York.

    Google Scholar 

  11. Krawczyk R. and Nickel, K. (1982), The centered form in interval arithmetics:Quadratic convergence and inclusion isotonicity, Computing, 28(2), 117–137.

    Google Scholar 

  12. Lagouanelle, J.-L. (2000), Kite algorithm: A new global interval method from linear evaluations. In: Dietrich, S., Facius, A. and Bierlox, N. (eds.) Abstracts of the SCAN2000 Conference, p. 126. Karlsruhe.

  13. Lagouanelle, J.-L. and Messine, F. (1998), Algorithme d’encadrement de l’optimum global d’une fonction différentiable, C. R. Acad. Sci. Paris Sér. I Math., 326(5), 629–632.

    Google Scholar 

  14. Messine, F. and Lagouanelle, J.-L. (1998), Enclosure methods for multivariate differentiable functions and application to global optimization, J.UCS: J. Universal Comput. Sci., 4(6), 589–603.

    Google Scholar 

  15. Moore, R.E. (1979), Methods and Applications of Interval Analysis, SIAM, Philadelphia.

    Google Scholar 

  16. Moore, R.E. (1996), Interval Analysis, Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  17. Neumaier, A. (1990), Interval Methods for Systems of Equations, Cambridge University Press, Cambridge.

    Google Scholar 

  18. Ratschek, H. and Rokne, J. (1984), Computer Methods for the Range of Functions, Ellis Horwood, Chichester.

    Google Scholar 

  19. Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization, Ellis Horwood, Chichester.

    Google Scholar 

  20. Ratz, D. (1999), A nonsmooth global optimization technique using slopes—the one dimensional case, J. Global Optimization, 14(4), 365–393.

    Google Scholar 

  21. Sotiropoulos, D.G. and Grapsa, T.N. (2001), A branch-and-prune method for global optimization. In: Kraemer, W. and Gudenberg, J.W.V. (eds). Scientific Computing, Validated Numerics, Interval Methods, Kluwer, Boston, p. 215–226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinkó, T., Lagouanelle, JL. & Csendes, T. A New Inclusion Function for Optimization: Kite – The One Dimensional Case. J Glob Optim 30, 435–456 (2004). https://doi.org/10.1007/s10898-004-8430-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-004-8430-5

Navigation