Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Development of a Fluorescent Enzyme-Linked DNA Aptamer-Magnetic Bead Sandwich Assay and Portable Fluorometer for Sensitive and Rapid Listeria Detection

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A fluorescent DNA aptamer-magnetic bead sandwich assay was developed to detect listeriolysin O (LLO) protein from pathogenic Listeria bacteria using a peroxidase-linked system, Amplex Ultra Red (AUR; derivatized resazurin) substrate, and a custom-designed handheld fluorometer. The assay is highly sensitive with demonstrated limits of detection (LODs) in the range of 4 to 61 L. monocytogenes cells or the equivalent LLO produced by 4 to 61 cells on average in separate titration trials. Total assay processing and analysis time was approximately 30 mins. The assay has demonstrated the ability to detect 6 species of Listeria as desired by the USDA’s Food Safety Inspection Service (FSIS). The portable system was designed to be used primarily with surface swab samples from fomites, but it can also be used to assess enrichment cultures. The minimal time to detect a positive enrichment culture in our hands from an initial 10 cell inoculum in 200 ml of broth has been 8 h post-incubation at 37 °C in shaker flask cultures. An optional automated magnetic bead assay processing and wash device capable of simultaneously processing 6 samples with low and consistent fluorescence background for higher volume central laboratories is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abu Al-Soud W, Râdström P (1998) Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples. Appl Environ Microbiol 64:3748–3753

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Allerberger F, Wagner M (2010) Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect 16:16–23

    Article  CAS  PubMed  Google Scholar 

  3. Bae YM, Baek SY, Lee SY (2012) Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers. Int J Food Microbiol 153:465–473

    Article  CAS  PubMed  Google Scholar 

  4. Bielecki J (1994) Association of listeriolysin O with the cell surface of Listeria monocytogenes. Acta Microbiol Pol 43:279–289

    CAS  PubMed  Google Scholar 

  5. Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH (2008) Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451:350–354

    Article  CAS  PubMed  Google Scholar 

  6. Border PM, Howard JJ, Plastow GS, Siggens KW (1990) Detection of Listeria species and Listeria monocytogenes using polymerase chain reaction. Lett Appl Microbiol 11:158–162

    Article  CAS  PubMed  Google Scholar 

  7. Bruno JG, Carrillo MP, Phillips T, Andrews CJ (2010) A novel screening method for competitive FRET-aptamers applied to E. coli assay development. J Fluoresc 20:1211–1223

    Article  CAS  PubMed  Google Scholar 

  8. Bruno JG, Phillips T, Carrillo MP, Crowell R (2009) Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J Fluoresc 19:427–435

    Article  CAS  PubMed  Google Scholar 

  9. Bruno JG, Richarte AM, Phillips T, Savage AA, Sivils JC, Greis A, Mayo M (2014) Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid Leishmania detection in sandflies. J Fluoresc 24:267–277

    Article  CAS  PubMed  Google Scholar 

  10. Centers for Disease Control and Prevention (2011) Multistate outbreak of listeriosis associated with Jensen Farms cantaloupe–United States, August-September 2011. MMWR Morb Mortal Week Rep 60:1357–1358

    Google Scholar 

  11. Churchill RLT, Lee H, Hall JC (2006) Detection of Listeria monocytogenes and the toxin listeriolysin O in food. J Microbiol Methods 64:141–170

    Article  CAS  PubMed  Google Scholar 

  12. Duan N, Wu S, Chen X, Huang Y, Xia Y, Ma X, Wang Z (2013) Selection and characterization of aptamers against Salmonella Typhimurium using whole-bacterium SELEX. J Agric Food Chem In Press

  13. Duan N, Wu S, Zhu C, Ma X, Wang Z, Yu Y, Jiang Y (2012) Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Anal Chim Acta 723:1–6

    Article  CAS  PubMed  Google Scholar 

  14. Dwivedi HP, Smiley RD, Jaykus LA (2010) Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 87:2323–2334

    Article  CAS  PubMed  Google Scholar 

  15. Gómez D, Ariño A, Carramiñana JJ, Rota C, Yangüela J (2012) Comparison of sampling procedures for recovery of Listeria monocytogenes from stainless steel food contact surfaces. J Food Prot 75:1077–1082

    Article  PubMed  Google Scholar 

  16. Goodridge LD, Bledar B (2011) Phage-based biocontrol strategies to reduce foodborne pathogens in foods. Bacteriophage 1:130–137

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gründling A, Burrack LS, Bouwer HGA, Higgin DE (2004) Listeria monocytogenes regulated flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci U S A 101:12318–12323

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hamon MA, Ribet D, Stavru F, Cossart P (2012) Listeriolysin O: the Swiss army knife of Listeria

  19. Hamula CL, Zhang H, Guan LL, Li XF, Le XC (2008) Selection of aptamers against live bacterial cells. Anal Chem 80:7812–7819

    Article  CAS  PubMed  Google Scholar 

  20. Hyeon JY, Chon JW, Choi IS, Park C, Kim DE, Seo KH (2012) Development of RNA aptamers for detection of Salmonella enteritidis. J Microbiol Methods 89:79–82

    Article  CAS  PubMed  Google Scholar 

  21. Ikanovic M, Rudzinski WE, Bruno JG, Allman A, Carrillo MP, Dwarakanath S, Bhahdigadi S, Rao P, Kiel JL, Andrews CJ (2007) Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores. J Fluoresc 17:193–199

    Article  CAS  PubMed  Google Scholar 

  22. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  PubMed  Google Scholar 

  23. Jyoti A, Vajpayee P, Singh G, Patel CB, Gupta KC, Shanker R (2011) Identification of environmental reservoirs of nontyphoidal salmonellosis: aptamer-assisted bioconcentration and subsequent detection of Salmonella typhimurium by quantitative polymerase chain reaction. Environ Sci Technol 45:8996–9002

    Article  CAS  PubMed  Google Scholar 

  24. Lee YJ, Han SR, Maeng JS, Cho YJ, Lee SW (2012) In vitro selection of Escherichia coli O157:H7-specific RNA aptamer. Biochem Biophys Res Commun 417:414–420

    Article  CAS  PubMed  Google Scholar 

  25. Matar GM, Hayes PS, Bibb WF, Swaminathan B (1997) Listeriolysin O-based latex agglutination test for the rapid detection of Listeria monocytogenes in foods. J Food Prot 60:1038–1040

    Google Scholar 

  26. Muldoon MT, Allen AC, Gonzalez V, Sutzko M, Klaus L (2012) SDIX RapidChek Listeria F.A.S.T. environmental test system for the detection of Listeria species on environmental surfaces. J AOAC Int

  27. Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK (2010) Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol 109:808–817

    Article  CAS  PubMed  Google Scholar 

  28. Pan Q, Zhang XL, Wu HY, He PW, Wang F, Zhang MS, Hu JM, Xia B, Wu J (2005) Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar typhi. Antimicrob Agents Chemother 49:4052–4060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Peng Z, Ling M, Ning Y, Deng L (2014) Rapid fluorescent detection of Escherichia coli K88 based on DNA aptamer library as direct and specific reporter combined with immuno-magnetic separation. J Fluoresc

  30. Singh G, Vajpayee P, Rani N, Jyoti A, Gupta KC, Shanker R (2012) Bio-capture of S. typhimurium from surface water by aptamer for culture-free quantification. Ecotoxicol Environ Saf 78:320–326

    Article  CAS  PubMed  Google Scholar 

  31. Suh SH, Jaykus LA (2013) Nucleic acid aptamers for capture and detection of Listeria spp. J Biotechnol 167:454–461

    Article  CAS  PubMed  Google Scholar 

  32. Suh SH, Dwivedi HP, Choi SJ, Jaykus LA (2014) Selection and characterization of DNA aptamers specific for Listeria species. Anal Biochem 459:39–45

    Article  CAS  PubMed  Google Scholar 

  33. Veluz GA, Pitchiah S, Alvarado CZ (2012) Attachment of Salmonella serovars and Listeria monocytogenes to stainless steel and plastic conveyor belts. Poult Sci 91:2004–2010

    Article  CAS  PubMed  Google Scholar 

  34. Wu WH, Li M, Wang Y, Ouyang HX, Wang L, Li CX, Cao YC, Meng QH, Lu JX (2012) Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium. Nanoscale Res Lett 7:658. doi:10.1186/1556-276X-7-658

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Texas Emerging Technology Fund, internal funding from Pronucleotein Biotechnologies, Inc. and U.S. SBIR Contract Nos. W81XWH-10-C-0179, W81XWH-10-C-0051, and W81XWH-09-C-0029.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to John G. Bruno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, J.G., Phillips, T., Montez, T. et al. Development of a Fluorescent Enzyme-Linked DNA Aptamer-Magnetic Bead Sandwich Assay and Portable Fluorometer for Sensitive and Rapid Listeria Detection. J Fluoresc 25, 173–183 (2015). https://doi.org/10.1007/s10895-014-1495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1495-8

Keywords

Navigation