Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Determining the edge metric dimension of the generalized Petersen graph P(n, 3)

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

It is known that the problem of computing the edge dimension of a graph is NP-hard, and that the edge dimension of any generalized Petersen graph P(nk) is at least 3. We prove that the graph P(n, 3) has edge dimension 4 for \(n\ge 11\), by showing semi-combinatorially the nonexistence of an edge resolving set of order 3 and by constructing explicitly an edge resolving set of order 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alspach B (1983) The classification of Hamiltonian generalized Petersen graphs. J Combin Theory Ser B 34:293–312

    Article  MathSciNet  Google Scholar 

  • Alspach B, Robinson PJ, Rosenfeld M (1981) A result on Hamiltonian cycles in generalized Petersen graphs. J Combin Theory Ser B 31:225–231

    Article  MathSciNet  Google Scholar 

  • Bannai K (1978) Hamiltonian cycles in generalized Petersen graphs. J Combin Theory Ser B 24:181–188

    Article  MathSciNet  Google Scholar 

  • Behzad A, Behzad M, Praeger CE (2008) On the domination number of the generalized Petersen graphs. Discrete Math 308:603–610

    Article  MathSciNet  Google Scholar 

  • Boben M, Pisanski T, Žitnik A (2005) \(I\)-Graphs and the corresponding configurations. J Combin Des 13:406–424

    Article  MathSciNet  Google Scholar 

  • Brešara B, Šumenjakb TK (2007) On the 2-rainbow domination in graphs. Discrete Appl Math 155:2394–2400

    Article  MathSciNet  Google Scholar 

  • Chartrand G, Hevia H, Wilson RJ (1992) The ubiquitous Petersen graph. Discrete Math 100:303–311

    Article  MathSciNet  Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL, Stein CC (2009) Introduction to Algorithms. MIT press, London

    MATH  Google Scholar 

  • Coxeter HSM (1950) Self-dual configurations and regular graphs. Bull. Amer. Math. Soc. 56:413–455

    Article  MathSciNet  Google Scholar 

  • Castagna F, Prins G (1972) Every generalized Petersen graph has a Tait coloring. Pacific J Math 40:53–58

    Article  MathSciNet  Google Scholar 

  • Daneshgar A, Madani M (2017) On the odd girth and the circular chromatic number of generalized Petersen graphs. J Comb Optim 33:897–923

    Article  MathSciNet  Google Scholar 

  • Ekinci GB, Gauci JB (2019) On the reliability of generalized Petersen graphs. Discrete Appl Math 252:2–9

    Article  MathSciNet  Google Scholar 

  • Frucht R, Graver JE, Watkins ME (1971) The groups of the generalized Petersen graphs. Proc Cambridge Philos Soc 70:211–218

    Article  MathSciNet  Google Scholar 

  • Filipović V, Kartelj A, Kratica J (2019) Edge metric dimension of some generalized Petersen graphs. Results Math 74:182

    Article  MathSciNet  Google Scholar 

  • Hliněný P (2006) Crossing number is hard for cubic graphs. J Combin Theory Ser B 96(4):455–471

    Article  MathSciNet  Google Scholar 

  • Holton DA, Sheehan J (1993) The Petersen graph. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jin DDD, Wang DGL (2019) On the minimum vertex cover of generalized Petersen graphs. Discrete Appl Math 266:309–318

    Article  MathSciNet  Google Scholar 

  • Kelenc A, Kuziak D, Taranenko A, Yero IG (2017) Mixed metric dimension of graphs. Appl Math Comput 314:429–438

    MathSciNet  MATH  Google Scholar 

  • Kwon YS, Mednykh AD, Mednykh IA (2017) On Jacobian group and complexity of the generalized Petersen graph \(\rm GP(n, k)\) through Chebyshev polynomials. Linear Algebra Appl 529:355–373

    Article  MathSciNet  Google Scholar 

  • Kelenc A, Tratnik N, Yero IG (2018) Uniquely identifying the edges of a graph: the edge metric dimension. Discrete Appl Math 251:204–220

    Article  MathSciNet  Google Scholar 

  • Krnc M, Wilson RJ (2020) Recognizing generalized Petersen graphs in linear time. Math Discrete Appl. https://doi.org/10.1016/j.dam.2020.03.007

    Article  MATH  Google Scholar 

  • Lovrečič Saražin M (1997) A note on the generalized Petersen graphs that are also Cayley graphs. J Combin Theory Ser B 69:226–229

    Article  MathSciNet  Google Scholar 

  • Nedela R, Škoviera M (1995) Which generalized Petersen graphs are Cayley graphs? J Graph Theory 19:1–11

    Article  MathSciNet  Google Scholar 

  • Peterin I, Yero IG (2020) Edge metric dimension of some graph operations. Bull Malaysia Math Sci Soc 43:2465–2477

    Article  MathSciNet  Google Scholar 

  • Richter RB, Salazar G (2002) The crossing number of \(P(N,3)\). Graphs Combin 18:381–394

    Article  MathSciNet  Google Scholar 

  • Schwenk AJ (1989) Enumeration of Hamiltonian cycles in certain generalized Petersen graphs. J Combin Theory Ser B 47:53–59

    Article  MathSciNet  Google Scholar 

  • Slater PJ (1975) Leaves of trees. Congr Numer 14:549–559

    MathSciNet  MATH  Google Scholar 

  • Stueckle S, Ringeisen RD (1984) Generalized Petersen graphs which are cycle permutation graphs. J Combin Theory Ser B 47:142–150

    Article  MathSciNet  Google Scholar 

  • Tutte WT (1967) A geometrical version of the four color problem, in book: combinatorial mathematics and its applications (Monographs on Statistics and Applied Probability). In: RC Bose, TA Dowling (eds.) Proceedings of the conference held at the University North Carolina at Chapel Hill, April 10th–14th, UNC Press, Chapel Hill, 2011 (originally published in 1969)

  • Watkins ME (1969) A theorem on Tait colorings with an application to the generalized Petersen graphs. J Combin Theory 6:152–164

    Article  MathSciNet  Google Scholar 

  • Xu G, Kang L (2011) On the power domination number of the generalized Petersen graphs. J Comb Optim 22:282–291

    Article  MathSciNet  Google Scholar 

  • Xu G (2009) 2-rainbow domination in generalized Petersen graphs \(P(n,3)\). Discrete Appl Math 157:2570–2573

    Article  MathSciNet  Google Scholar 

  • Yero IG (2016) Vertices, edges, distances and metric dimension in graphs. Electron Notes Discrete Math 55:191–194

    Article  Google Scholar 

  • Yang Z, Wu B (2018) Strong edge chromatic index of the generalized Petersen graphs. Appl Math Comput 321:431–441

    MathSciNet  MATH  Google Scholar 

  • Zhu E, Taranenko A, Shao Z, Xu J (2019) On graphs with the maximum edge metric dimension. Discrete Appl Math 257:317–324

    Article  MathSciNet  Google Scholar 

  • Zubrilina N (2018) On the edge dimension of a graph. Discrete Math 341(7):2083–2088

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. L. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was supported by National Natural Science Foundation of China (Grant No. 11671037)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D.G.L., Wang, M.M.Y. & Zhang, S. Determining the edge metric dimension of the generalized Petersen graph P(n, 3). J Comb Optim 43, 460–496 (2022). https://doi.org/10.1007/s10878-021-00780-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-021-00780-8

Keywords

Mathematics Subject Classification

Navigation