Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The principal eigenvector to \(\alpha \)-spectral radius of hypergraphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

For a connected hypergraph H with \(rank(H)=r\) , let \(\mathcal {D}(H)\) and \(\mathcal {A}(H)\) be the diagonal tensor of degrees and the adjacency tensor of H, respectively. For \(0 \le \alpha < 1\), the \(\alpha \)-spectral radius \(\rho _{\alpha }(H)\) of H is defined as \(\rho _{\alpha }(H)=\max \{x^{T}(\mathcal {A}_{\alpha }x)|x \in \mathbf {R}_{+}^{n},\Vert x\Vert _{r}=1\}\), where \(\mathcal {A}_{\alpha }(H)=\alpha \mathcal {D}(H)+(1-\alpha )\mathcal {A}(H)\). In this paper, we present some bounds on entries of the positive unit eigenvector corresponding to the \(\alpha \)-spectral radius of connected uniform hypergraphs. Furthermore, we obtain some bounds on entries of the positive unit eigenvector corresponding to the \(\alpha \)-spectral radius of connected general hypergraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee A, Char A, Mondal B (2017) Spectral of general hypergraphs. Linear Algebra Appl 518:14–30

    Article  MathSciNet  Google Scholar 

  • Chang KC, Pearson K, Zhang T (2008) Perron–Frobenius theorem for nonnegative tensors. Commun Math Sci 6:507–520

    Article  MathSciNet  Google Scholar 

  • Cooper J, Dutle A (2012) Spectra of uniform hypergraphs. Linear Algebra Appl 436:3268–3299

    Article  MathSciNet  Google Scholar 

  • Friedland S, Gaubert S, Han L (2013) Perron–Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl 428:738–749

    Article  MathSciNet  Google Scholar 

  • Guo H, Zhou B (2020) On the \(\alpha \)-spectral radius of uniform hypergraphs. Discuss Math Gr Theory 40:559–575

    Article  MathSciNet  Google Scholar 

  • Kang L, Liu L, Shan E (2019) The eigenvectors to the \(p\)-spectral radius of general hypergraphs. J Comb Optim 38:556–569

    Article  MathSciNet  Google Scholar 

  • Li H, Zhou J, Bu C (2018) Principal eigenvectors and spectral radii of uniform hypergraphs. Linear Algebra Appl 544:273–285

    Article  MathSciNet  Google Scholar 

  • Lim LH (2005) Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE international workshop on computational advances in multi-sensor adaptive processing, vol 1. CAMSPA’05, pp 129–132

  • Liu L, Kang L, Yuan X (2016) On the principal eigenvectors of uniform hypergraphs. Linear Algebra Appl 511:430–446

    Article  MathSciNet  Google Scholar 

  • Lu L, Man S (2016) Connected hypergraphs with small spectral radius. Linear Algebra Appl 509:206–227

    Article  MathSciNet  Google Scholar 

  • Nikiforov V (2014) Analytic methods for uniform hypergraphs. Linear Algebra Appl 457:455–535

    Article  MathSciNet  Google Scholar 

  • Nikiforov V (2017) Merging the A- and Q-spectral theories. Appl Anal Discrete Math 11:81–107

    Article  MathSciNet  Google Scholar 

  • Papendieck B, Recht P (2000) On maximal entries in the principal eigenvector of graphs. Linear Algebra Appl 310:129–138

    Article  MathSciNet  Google Scholar 

  • Qi L (2005) Eigenvalues of a real supersymmetric tensor. J Symbol Comput 40:1302–1324

    Article  MathSciNet  Google Scholar 

  • Qi L (2013) Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl 439:228–238

    Article  MathSciNet  Google Scholar 

  • Shao J (2013) A general product of tensors with applications. Linear Algebra Appl 439:2350–2366

    Article  MathSciNet  Google Scholar 

  • Wang Q, Kang L, Kang E, Liang Z (2019) The \(\alpha \)-spectral radius of uniform hypergraphs concerning degrees and domination number. J Comb Optim 38:1128–1142

    Article  MathSciNet  Google Scholar 

  • Yang Y, Yang Q (2010) Further results for Perron–Frobenius theorem for nonnegative tensors. SIAM J Matrix Anal Appl 31:2517–2530

    Article  MathSciNet  Google Scholar 

  • Yang Y, Yang Q (2011) On some properties of nonnegative weakly irreducible tensor. arXiv:1111.0713v2

  • Zhang W, Liu L, Kang L, Bai Y (2017) Some properties of the spectral radius for general hypergraphs. Linear Algebra Appl 513:103–119

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Research was partially supported by the National Nature Science Foundation of China (Grant Numbers 11871329, 11971298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erfang Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Kang, L. & Shan, E. The principal eigenvector to \(\alpha \)-spectral radius of hypergraphs. J Comb Optim 42, 258–275 (2021). https://doi.org/10.1007/s10878-020-00617-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-020-00617-w

Keywords

Navigation