Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A feasibility approach for constructing combinatorial designs of circulant type

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

In this work, we propose an optimization approach for constructing various classes of circulant combinatorial designs that can be defined in terms of autocorrelation. The problem is formulated as a so-called feasibility problem having three sets, to which the Douglas–Rachford projection algorithm is applied. The approach is illustrated on three different classes of circulant combinatorial designs: circulant weighing matrices, D-optimal matrices of circulant type, and Hadamard matrices with two circulant cores. Furthermore, we explicitly construct two new circulant weighing matrices, a CW(126, 64) and a CW(198, 100), whose existence was previously marked as unresolved in the most recent version of Strassler’s table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The support of \(c=(c_0,c_1,\ldots ,c_{n-1})\in {\mathbb {R}}^n\) is the set \(\{i\in \{0,\ldots ,n-1\}: c_i\ne 0\}\).

References

  • Aragón Artacho FJ, Borwein JM, Tam MK (2014a) Recent results on Douglas-Rachford methods for combinatorial optimization problems. J Optim Theory Appl 163(1):1–30

  • Aragón Artacho FJ, Borwein JM, Tam MK (2014b) Douglas-Rachford feasibility methods for matrix completion problems. ANZIAM J 55(4):299–326

  • Aragón Artacho FJ, Borwein JM, Tam MK (2016) Global behavior of the Douglas-Rachford method for a nonconvex feasibility problem. J Glob Optim 65(2):309–327

    Article  MathSciNet  MATH  Google Scholar 

  • Aragón Artacho FJ, Campoy R (accepted Nov. 2017) Solving graph coloring problems with the Douglas–Rachford algorithm. Set-Valued Var. Anal., p 27. https://doi.org/10.1007/s11228-017-0461-4

  • Arasu KT, Dillon JF (1999) Difference sets. Sequences and their correlation properties. In: Pott A, Kumar PV, Helleseth T, Jungnickel D (eds) Perfect ternary arrays. Springer, Dordrecht, pp 1–15

    Google Scholar 

  • Arasu KT, Gulliver TA (2001) Self-dual codes over \({\mathbb{F}}_p\) and weighing matrices. IEEE Trans Inf Theory 47(5):2051–2055

    Article  MATH  Google Scholar 

  • Arasu KT, Gutman AJ (2010) Circulant weighing matrices. Cryptogr Commun 2:155–171

    Article  Google Scholar 

  • Arasu KT, Kotsireas IS, Koukouvinos C, Seberry J (2010) On circulant and two-circulant weighing matrices. Australas J Combin 48:43–51

    MathSciNet  MATH  Google Scholar 

  • Arasu KT, Leung KH, Ma SL, Nabavi A, Ray-Chaudhuri DK (2006a) Circulant weighing matrices of weight \(2^{2t}\). Des Codes Cryptogr 41(1):111–123

  • Arasu KT, Leung KH, Ma SL, Nabavi A, Ray-Chaudhuri DK (2006b) Determination of all possible orders of weight 16 circulant weighing matrices. Finite Fields Appl 12(4):498–538

  • Bauschke HH, Combettes PL (2011) Convex analysis and monotone operator theory in hilbert spaces. Springer, New York

    Book  MATH  Google Scholar 

  • Bauschke HH, Combettes PL, Luke DR (2004) Finding best approximation pairs relative to two closed convex sets in Hilbert space. J Approx Theory 127(2):178–192

    Article  MathSciNet  MATH  Google Scholar 

  • Bauschke HH, Dao MN (2017) On the finite convergence of the Douglas-Rachford algorithm for solving (not necessarily convex) feasibility problems in Euclidean spaces. SIAM J Optim 27:207–537

    Article  MathSciNet  MATH  Google Scholar 

  • Borwein JM, Lewis AS (2006) Convex analysis and nonlinear optimization. Springer, New York

    Book  MATH  Google Scholar 

  • Brent RP (2013) Finding D-optimal design by randomised decomposition and switching. Australas J Combin 55:15–30

    MathSciNet  MATH  Google Scholar 

  • Briggs WL, Henson VE (1995) DFT. An owner’s manual for the discrete Fourier transform, SIAM, Philadelphia

    MATH  Google Scholar 

  • Cohn JHE (1989) On determinants with elements \(\pm \)1. Bull Lond Math Soc 21(1):36–42

    Article  MathSciNet  MATH  Google Scholar 

  • Colbourn CJ, Dinitz JH (2007) Handbook of combinatorial designs, 2nd edn. Chapman & Hall, Boca Raton

    MATH  Google Scholar 

  • Đoković DZ̆, Kotsireas IS (2012) New results on D-pptimal matrices. J Combin Des 20(6):278–289

  • Đoković DZ̆, Kotsireas IS (2015a) Compression of periodic complementary sequences and applications. Des Codes Cryptogr 74(2):365–377

  • Đoković DZ̆, Kotsireas IS (2015b) D-optimal matrices of orders 118, 138, 150, 154 and 174. In: Colbourn CJ (ed) Algebraic design theory and Hadamard matrices. Springer, Basel, pp 71–82

  • Ehlich H (1964) Determinantenabschätzungen für binäre Matrizen. Math Zeitschr 83:123–132

    Article  MathSciNet  Google Scholar 

  • Elser V, Rankenburg I, Thibault P (2007) Searching with iterated maps. Proc Natl Acad Sci 104(2):418–426

    Article  MathSciNet  MATH  Google Scholar 

  • Flammia ST, Severini S (2009) Weighing matrices and optical quantum computing. J Phys A 42(6):065302

    Article  MathSciNet  MATH  Google Scholar 

  • Golomb SW, Gong G (2004) Signal design for good correlation. Cambridge University Press, New York

    MATH  Google Scholar 

  • Gravel S, Elser V (2008) Divide and concur: a general approach to constraint satisfaction. Phys Rev E 78(3):036706

    Article  Google Scholar 

  • Gutman AJ (2009) Circulant weighing matrices. Master’s Thesis, Wright State University. http://rave.ohiolink.edu/etdc/view?acc_num=wright1244468669

  • Hesse R (2014) Fixed point algorithms for nonconvex feasibility with applications. Ph.D. thesis, University of Göttingen. http://hdl.handle.net/11858/00-1735-0000-0022-5F3F-E

  • Horadam KJ (2012) Hadamard matrices and their applications. Princeton University Press, New Jersey

    MATH  Google Scholar 

  • Kotsireas IS (2013) Algorithms and metaheuristics for combinatorial matrices. In: Pardalos PM, Du D-Z, Graham RL (eds) Handbook of combinatorial optimization. Springer, New York, pp 283–309

    Chapter  Google Scholar 

  • Kotsireas IS, Koukouvinos C, Seberry J (2006) Hadamard ideals and Hadamard matrices with two circulant cores. Eur J Combin 27(5):658–668

    Article  MathSciNet  MATH  Google Scholar 

  • Pierra G (1984) Decomposition through formalization in a product space. Math Program 28:96–115

    Article  MathSciNet  MATH  Google Scholar 

  • Sala M, Sakata S, Mora T, Traverso C, Perret L (2009) Gröbner bases, coding, and cryptography. Springer, Berlin

    Book  MATH  Google Scholar 

  • Seberry JR (2017) Orthogonal designs: hadamard matrices, quadratic forms and algebras. Springer, Berlin

    Book  MATH  Google Scholar 

  • Seberry J, Yamada M (1992) Hadamard matrices, sequences, and block designs. In: Dintz JH, Stinson DR (eds) Contemporary design theory: a collection of surveys. Wiley, Hoboken, pp 431–560

    Google Scholar 

  • Strassler Y (1997) The Classification of Circulant Weighing Matrices of Weight 9. Ph.D. thesis, Bar-Ilan University (Israel)

  • Stinson DR (2004) Combinatorial designs. Constructions and analysis. Springer, New York

    MATH  Google Scholar 

  • Sturmfels B (2008) Algorithms in Invariant theory. Springer, Vienna

    MATH  Google Scholar 

  • Tan MM (2016) Group invariant weighing matrices. arXiv:1610.01914

  • Tan MM (2014) Relative difference sets and circulant weighing matrices. Ph.D. thesis, Nanyang Technological University. https://repository.ntu.edu.sg/handle/10356/62325

  • van Dam W (2002) Quantum algorithms for weighing matrices and quadratic residues. Algorithmica 34(4):413–428

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank an anonymous referee for their careful reading and suggestions, which helped us to improve the manuscript. We would also like to thank Yossi Strassler for sending us a scan of his original table. This research was enabled, in part, thanks to support provided by Compute Canada and their Graham petascale supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew K. Tam.

Additional information

Dedicated to Jonathan M. Borwein.

This work is dedicated to the late Jonathan M. Borwein who suggested this project during his 2016 sabbatical in Canada. FJAA and RC were partially supported by Ministerio de Economía, Industria y Competitividad (MINECO) and European Regional Development Fund (ERDF), Grant MTM2014-59179-C2-1-P. FJAA was supported by the Ramón y Cajal program by MINECO and ERDF (RYC-2013-13327) and RC was supported by MINECO and European Social Fund (BES-2015-073360) under the program “Ayudas para contratos predoctorales para la formación de doctores 2015”. IK is supported by an Natural Sciences and Engineering Research Council Grant. MKT was supported by Deutsche Forschungsgemeinschaft RTG2088 and by a Postdoctoral Fellowship from the Alexander von Humboldt Foundation.

Appendix: Detailed results for CW matrices

Appendix: Detailed results for CW matrices

Table 3 Results for CW matrices (10 random initialization, 3600 s time limit)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aragón Artacho, F.J., Campoy, R., Kotsireas, I. et al. A feasibility approach for constructing combinatorial designs of circulant type. J Comb Optim 35, 1061–1085 (2018). https://doi.org/10.1007/s10878-018-0250-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-018-0250-5

Keywords

Navigation