Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Convex partitions with 2-edge connected dual graphs

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

It is shown that for every finite set of disjoint convex polygonal obstacles in the plane, with a total of n vertices, the free space around the obstacles can be partitioned into open convex cells whose dual graph (defined below) is 2-edge connected. Intuitively, every edge of the dual graph corresponds to a pair of adjacent cells that are both incident to the same vertex.

Aichholzer et al. recently conjectured that given an even number of line-segment obstacles, one can construct a convex partition by successively extending the segments along their supporting lines such that the dual graph is the union of two edge-disjoint spanning trees. Here we present counterexamples to this conjecture, with n disjoint line segments for any n≥15, such that the dual graph of any convex partition constructed by this method has a bridge edge, and thus the dual graph cannot be partitioned into two spanning trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aichholzer O, Bereg S, Dumitrescu A, García A, Huemer C, Hurtado F, Kano M, Márquez A, Rappaport D, Smorodinsky S, Souvaine D, Urrutia J, Wood D (2009) Compatible geometric matchings. Comput Geom 42:617–626

    Article  MathSciNet  MATH  Google Scholar 

  • Andrzejak A, Aronov B, Har-Peled S, Seidel R, Welzl E (1998) Results on k-sets and j-facets via continuous motion. In: Proc 14th Sympos Comput Geom. ACM, New York, pp 192–199

    Google Scholar 

  • Banchoff TF (1974) Global geometry of polygons I: The theorem of Fabricius–Bjerre. Proc Am Math Soc 45:237–241

    Article  MathSciNet  MATH  Google Scholar 

  • Benbernou N, Demaine ED, Demaine ML, Hoffmann M, Ishaque M, Souvaine DL, Tóth CD (2007) Disjoint segments have convex partitions with 2-edge connected dual graphs. In: Proc Canadian Conf Comput Geom, pp 13–16

  • Benbernou N, Demaine ED, Demaine ML, Hoffmann M, Ishaque M, Souvaine DL, Tóth CD (2008) Erratum for “Disjoint segments have convex partitions with 2-edge connected dual graphs”. In: Proc Canadian Conf Comput Geom, p 223

  • Bentley JL, Ottmann TA (1979) Algorithms for reporting and counting geometric intersections. IEEE Trans Comput C 28(9):643–647

    Article  MATH  Google Scholar 

  • Bose P, Houle ME, Toussaint GT (2001) Every set of disjoint line segments admits a binary tree. Discrete Comput Geom 26(3):387–410

    MathSciNet  MATH  Google Scholar 

  • Carlsson JG, Armbruster B, Ye Y (2009) Finding equitable convex partitions of points in a polygon efficiently. ACM Trans Algorithms (to appear)

  • Chazelle B, Dobkin DP (1985) Optimal convex decompositions. Comput Geom 2:63–133

    MathSciNet  Google Scholar 

  • Grantson M, Levcopoulos C (2005) A fixed parameter algorithm for the minimum number convex partition problem. In: Proc Japan Conf Discrete Comput Geom, Tokyo, 2004. LNCS, vol 3746. Springer, Berlin, pp 83–94

    Chapter  Google Scholar 

  • Ishaque M, Speckmann B, Tóth CD (2009) Shooting permanent rays among disjoint polygons in the plane. In: Proc 25th Sympos Comput Geom. ACM, New York, pp 51–60

    Google Scholar 

  • Kaneko A, Kano M (2002) Perfect partitions of convex sets in the plane. Discrete Comput Geom 28(2):211–222

    MathSciNet  MATH  Google Scholar 

  • Keil M (2000) Polygon decomposition. In: Sack J-R, Urrutia J (eds) Handbook of computational geometry. Elsevier, Amsterdam, pp 491–518

    Chapter  Google Scholar 

  • Keil M, Snoeyink J (2002) On the time bound for convex decomposition of simple polygons. Int J Comput Geom Appl 12:181–192

    Article  MathSciNet  MATH  Google Scholar 

  • Knauer C, Spillner A (2006) Approximation algorithms for the minimum convex partition problem. In: Proc SWAT. LNCS, vol 4059. Springer, Berlin, pp 232–241

    Google Scholar 

  • Krumme DW, Rafalin E, Souvaine DL, Tóth CD (2008) Tight bounds for connecting sites across barriers. Discrete Comput Geom 40(3):377–394

    Article  MathSciNet  MATH  Google Scholar 

  • Lien J-M, Amato NM (2006) Approximate convex decomposition of polygons. Comput Geom 35(1–2):100–123

    Article  MathSciNet  MATH  Google Scholar 

  • Lingas A (1982) The power of non-rectilinear holes. In: Proc 9th ICALP. LNCS, vol 140. Springer, Berlin, pp 369–383

    Google Scholar 

  • Streinu I (2005) Pseudo-triangulations, rigidity and motion planning. Discrete Comput Geom 34(4):587–635

    Article  MathSciNet  MATH  Google Scholar 

  • Tan G, Bertier M, Kermarrec A-M (2009) Convex partition of sensor networks and its use in virtual coordinate geographic routing. In: Proc INFOCOM. IEEE Comput Soc, Los Alamitos, pp 1746–1754

    Google Scholar 

  • Tóth CD (2003) Guarding disjoint triangles and claws in the plane. Comput Geom 25(1–2):51–65

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mashhood Ishaque.

Additional information

This material is based upon work supported by the National Science Foundation under Grant No. CCF-0431027 and CCF-0830734, Tufts Provost’s Summer Scholars Program, and NSERC grant RGPIN 35586. Research was done at Tufts University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Jubeh, M., Hoffmann, M., Ishaque, M. et al. Convex partitions with 2-edge connected dual graphs. J Comb Optim 22, 409–425 (2011). https://doi.org/10.1007/s10878-010-9310-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-010-9310-1

Keywords

Navigation