Nothing Special   »   [go: up one dir, main page]

Skip to main content

Interfacial interactions and enhanced optoelectronic properties of GaN/perovskite heterostructures: insight from first-principles calculations

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we explored the structural, electronic, optical, and transport properties of the GaN/perovskite heterostructures using density functional theory combined with non-equilibrium Green’s function calculations. Four interfacial configurations have been studied, and the interfacial properties were discussed on the basis of the optimal theoretical situation. The Ga-polar N-termination interface was found to be the most favorable interfacial configuration, with an interfacial cohesive energy of 0.4 eV/Å2, whereas that of the other three heterostructures was less than 0.1 eV/Å2. Results showed that the interfacial nitrogen atoms had a significant impact on the structural stability and electronic properties via interfacial hybridizations. Furthermore, the influence of segregated dopants at the interface on device performance was also studied. The interfacial doping strategy proposed in this study demonstrated improved optoelectronic properties. Therefore, these results provide theoretical guidelines for developing high-performance of GaN/perovskite heterostructures in perovskite solar cells.

Graphical abstract

The atomic structure, electronic and optical properties of GaN (0001)/MAPbI3 (110) interfaces with a lattice mismatch less than 3% were analyzed using first-principles calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM (2015) Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347:519–522

    Article  CAS  Google Scholar 

  2. Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L (2017) Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat Commun 81:5330

    Google Scholar 

  3. Kim J, Chung C-H, Hong K-H (2016) Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites. Phys Chem Chem Phys 18:27143–27147

    Article  CAS  Google Scholar 

  4. Wang P, Wu Y, Cai B, Ma Q, Zheng X, Zhang W-H (2019) Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv Funct Mater 29:1807661

    Article  CAS  Google Scholar 

  5. National Renewable Energy Laboratory (NREL), Best research-cell efficiency chart https://www.nrel.gov/pv/cell-efficiency.html. Accessed Sept 2020

  6. Berhe TA, Su W-N, Chen C-H, Pan C-J, Cheng J-H, Chen H-M, Tsai M-C, Chen L-Y, Dubale AA, Hwang B-J (2016) Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci 9:323–356

    Article  CAS  Google Scholar 

  7. Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3:8970–8980

    Article  CAS  Google Scholar 

  8. Boyd CC, Cheacharoen R, Leijtens T, McGehee MD (2019) Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev 119:3418–3451

    Article  CAS  Google Scholar 

  9. Cho A-N, Park N-G (2017) Impact of interfacial layers in perovskite solar cells. Chemsuschem 10:3687–3704

    Article  CAS  Google Scholar 

  10. Yang G, Tao H, Qin P, Ke W, Fang G (2016) Recent progress in electron transport layers for efficient perovskite solar cells. J Mater Chem A 4:3970–3990

    Article  CAS  Google Scholar 

  11. Sekimoto T, Matsui T, Nishihara T, Uchida R, Sekiguchi T, Negami T (2019) Influence of a hole-transport layer on light-induced degradation of mixed organic-inorganic halide perovskite solar cells. ACS Appl Energ Mater 2:5039–5049

    Article  CAS  Google Scholar 

  12. Wang S, Liu B, Zhu Y, Ma Z, Liu B, Miao X, Ma R, Wang C (2018) Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer. Sol Energy 169:335–342

    Article  CAS  Google Scholar 

  13. Courtier NE, Cave JM, Foster JM, Walker AB, Richardson G (2019) How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energy Environ Sci 12:396–409

    Article  CAS  Google Scholar 

  14. Zhao Y, Zhang H, Ren X, Zhu HL, Huang Z, Ye F, Ouyang D, Cheah KW, Jen KY, Choy WCH (2018) Thick TiO2-based top electron transport layer on perovskite for highly efficient and stable solar cells. ACS Energy Lett 3:2891–2898

    Article  CAS  Google Scholar 

  15. Choi J, Song S, Hörantner MT, Snaith HJ, Park T (2016) Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells. ACS Nano 10:6029–6036

    Article  CAS  Google Scholar 

  16. Liu C, Cai M, Yang Y, Arain Z, Ding Y, Shi X, Shi P, Ma S, Hayat T, Alsaedi A, Wu J, Dai S, Cao G (2019) A C60/TiOx bilayer for conformal growth of perovskite films for UV stable perovskite solar cells. J Mater Chem A 7:11086–11094

    Article  CAS  Google Scholar 

  17. Wilkes GC, Deng X, Choi JJ, Gupta MC (2018) Laser annealing of TiO2 electron-transporting layer in perovskite solar cells. ACS Appl Mater Interfaces 10:41312–41317

    Article  CAS  Google Scholar 

  18. Spalla M, Planes E, Perrin L, Matheron M, Berson S, Flandin L (2019) Alternative electron transport layer based on Al-Doped ZnO and SnO2 for perovskite solar cells: impact on microstructure and stability. ACS Appl Energ Mater 2:7183–7195

    Article  CAS  Google Scholar 

  19. Qiu Q, Liu H, Qin Y, Ren C, Song J (2020) Efficiency enhancement of perovskite solar cells based on Al2O3-passivated nano-nickel oxide film. J Mater Sci 55:13881–13891

    Article  CAS  Google Scholar 

  20. Ma J, Lin Z, Guo X, Zhou L, Su J, Zhang C, Yang Z, Chang J, Liu S, Hao Y (2019) Low-temperature solution-processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20%. Sol RRL 3:1900096

    Article  Google Scholar 

  21. Jeong S, Seo S, Park H, Shin H (2019) Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%. Chem Commun 55:2433–2436

    Article  CAS  Google Scholar 

  22. Dong L, Pang T, Yu J, Wang Y, Zhu W, Zheng H, Yu J, Jia R, Chen Z (2019) Performance-enhanced solar-blind photodetector based on a CH3NH3PbI3/β-Ga2O3 hybrid structure. J Mater Chem C 7:14205–14211

    Article  CAS  Google Scholar 

  23. Patil P, Mann DS, Nakate UT, Hahn Y-B, Kwon S-N, Na S-I (2020) Hybrid interfacial ETL engineering using PCBM-SnS2 for high-performance p-i-n structured planar perovskite solar cells. Chem Eng J 397:125504

    Article  CAS  Google Scholar 

  24. Singh R, Giri A, Pal M, Thiyagarajan K, Kwak J, Lee J-J, Jeong U, Cho K (2019) Perovskite solar cells with an MoS2 electron transport layer. J Mater Chem A 7:7151–7158

    Article  CAS  Google Scholar 

  25. Li J, Liu H (2018) Magnetism investigation of GaN monolayer doped with group VIII B transition metals. J Mater Sci 53:15986–15994. https://doi.org/10.1007/s10825-020-01512-7

    Article  CAS  Google Scholar 

  26. Lay S, Mercier F, Boichot R, Giusti G, Pons M, Blanquet E (2020) Prediction of dislocation density in AlN or GaN films deposited on (0001) sapphire. J Mater Sci 55:9152–9162. https://doi.org/10.1016/j.jallcom.2020.157810

    Article  CAS  Google Scholar 

  27. Zhou H, Mei J, Xue M, Song Z, Wang H (2017) High-stability, self-powered perovskite photodetector based on a CH3NH3PbI3/GaN heterojunction with C60 as an electron transport layer. J Phys Chem C 121:21541–21545

    Article  CAS  Google Scholar 

  28. Wang Y, Zheng D, Li L, Zhang Y (2018) Enhanced efficiency of flexible GaN/perovskite solar cells based on the piezo-phototronic effect. ACS Appl Energ Mater 1:3063–3069

    Article  CAS  Google Scholar 

  29. Zhao L, Gao Y, Su M, Shang Q, Liu Z, Li Q, Wei Q, Li M, Fu L, Zhong Y, Shi J, Chen J, Zhao Y, Qiu X, Liu X, Tang N, Xing G, Wang X, Shen B, Zhang Q (2019) Vapor-phase incommensurate heteroepitaxy of oriented single-crystal CsPbBr3 on GaN: toward integrated optoelectronic applications. ACS Nano 13:10085–10094

    Article  CAS  Google Scholar 

  30. Wei H, Wu J, Qiu P, Liu S, He Y, Peng M, Li D, Meng Q, Zaera F, Zheng X (2019) Plasma-enhanced atomic-layer-deposited gallium nitride as an electron transport layer for planar perovskite solar cells. J Mater Chem A 7:25347–25354

    Article  CAS  Google Scholar 

  31. Lim KTP, Deakin C, Ding B, Bai X, Griffin P, Zhu T, Oliver RA, Credgington D (2019) Encapsulation of methylammonium lead bromide perovskite in nanoporous GaN. APL Mater 7:021107

    Article  Google Scholar 

  32. Shao D, Zhu W, Xin G, Lian J, Sawyer S (2019) Inorganic vacancy-ordered perovskite Cs2SnCl6:Bi/GaN heterojunction photodiode for narrowband, visible-blind UV detection. Appl Phys Lett 115:121106

    Article  Google Scholar 

  33. Wierzbowska M (2020) Mechanism of segmentation of lead halide perovskite at interfaces with GaN and ZnO. Appl Surf Sci 514:145924

    Article  CAS  Google Scholar 

  34. Ergen O, Gilbert SM, Pham T, Turner Sally J, Tan Mark Tian Z, Worsley Marcus A, Zettl A (2017) Graded bandgap perovskite solar cells. Nat Mater 16:522–525

    Article  CAS  Google Scholar 

  35. Bonef B, Catalano M, Lund C, Denbaars SP, Nakamura S, Mishra UK, Kim MJ, Keller S (2017) Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive x-ray spectroscopy and atom probe tomography. Appl Phys Lett 110:143101

    Article  Google Scholar 

  36. Duff AI, Lymperakis L, Neugebauer J (2014) Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces: an ab initio approach. Phys Rev B 89:085307

    Article  Google Scholar 

  37. Liu X, Ji D, Lu Y (2015) Scattering induced by Al segregation in AlGaN/GaN heterostructures. Appl Phys Lett 107:072105

    Article  Google Scholar 

  38. Guo Y, Xue Y, Li X, Li C, Song H, Niu Y, Liu H, Mai X, Zhang J, Guo Z (2019) Effects of transition metal substituents on interfacial and electronic structure of CH3NH3PbI3/TiO2 interface: a first-principles comparative study. Nanomaterials 9:966

    Article  CAS  Google Scholar 

  39. Feng H-J, Paudel TR, Tsymbal EY, Zeng XC (2015) Tunable optical properties and charge separation in CH3NH3SnxPb1–xI3/TiO2-based planar perovskites cells. J Am Chem Soc 137:8227–8236

    Article  CAS  Google Scholar 

  40. Shu H, Niu XH, Ding XJ, Wang Y (2019) Effects of strain and surface modification on stability, electronic and optical properties of GaN monolayer. Appl Surf Sci 479:475–481

    Article  CAS  Google Scholar 

  41. Shu H (2020) Structural stability, tunable electronic and optical properties of two-dimensional WS2 and GaN heterostructure: First-principles calculations. Mater Sci Eng B 261:114672

    Article  CAS  Google Scholar 

  42. Shu H, Zhao M, Sun M (2019) Theoretical Study of GaN/BP van der Waals nanocomposites with strain-enhanced electronic and optical properties for optoelectronic applications. ACS Appl Nano Mater 2:6482–6491

    Article  CAS  Google Scholar 

  43. Abdulraheem Z, Jappor HR (2020) Tailoring the electronic and optical properties of SnSe2/InS van der Waals heterostructures by the biaxial strains. Phys Lett A 384:126090

    Article  Google Scholar 

  44. Almayyali AOM, Kadhim BB, Jappor HR (2020) Stacking impact on the optical and electronic properties of two-dimensional MoSe2/PtS2 heterostructures formed by PtS2 and MoSe2 monolayers. Chem Phys 532:110679

    Article  CAS  Google Scholar 

  45. Almayyali AOM, Kadhim BB, Jappor HR (2020) Tunable electronic and optical properties of 2D PtS2/MoS2 van der Waals heterostructure. Physica E 118:113866

    Article  CAS  Google Scholar 

  46. Abed Al-Abbas SS, Muhsin MK, Jappor HR (2019) Two-dimensional GaTe monolayer as a potential gas sensor for SO2 and NO2 with discriminate optical properties. Superlattices Microstruct 135:106245

    Article  CAS  Google Scholar 

  47. Attia AA, Jappor HR (2019) Tunable electronic and optical properties of new two-dimensional GaN/BAs van der Waals heterostructures with the potential for photovoltaic applications. Chem Phys Lett 728:124–131

    Article  CAS  Google Scholar 

  48. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  49. Wimmer E, Christensen M, Eyert V, Wolf W, Reith D, Rozanska X, Freeman C, Saxe P (2016) Computational materials engineering: recent applications of VASP in the MedeA® software environment. J Korean Ceram Soc 53:263–272

    Article  CAS  Google Scholar 

  50. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  51. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  52. Pack JD, Monkhorst HJ (1977) “Special points for Brillouin-zone integrations”-a reply. Phys Rev B 16:1748–1749

    Article  Google Scholar 

  53. Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621

    Article  CAS  Google Scholar 

  54. Caldeweyher E, Bannwarth C, Grimme S (2017) Extension of the D3 dispersion coefficient model. J Chem Phys 147:034112

    Article  Google Scholar 

  55. Neugebauer J, Scheffler M (1992) Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys Rev B 46:16067–16080

    Article  CAS  Google Scholar 

  56. Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov PA, Vej-Hansen UG, Lee M-E, Chill ST, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard MLN, Martinez U, Blom A, Brandbyge M, Stokbro K (2019) QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J Phys: Condens Matter 32:015901

    Google Scholar 

  57. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys: Condens Matter 14:2745–2779

    CAS  Google Scholar 

  58. van Setten MJ, Giantomassi M, Bousquet E, Verstraete MJ, Hamann DR, Gonze X, Rignanese GM (2018) The PseudoDojo: training and grading A 85 element optimized norm-conserving pseudopotential table. Comput Phys Commun 226:39–54

    Article  Google Scholar 

  59. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658

    Article  CAS  Google Scholar 

  60. Mosconi E, Ronca E, Angelis De (2014) F First-principles investigation of the TiO2/Organohalide perovskites interface: the role of interfacial chlorine. J Phys Chem Lett 5:2619–2625

    Article  CAS  Google Scholar 

  61. Haruyama J, Sodeyama K, Han L, Tateyama Y (2016) Surface properties of CH3NH3PbI3 for perovskite solar cells. Acc Chem Res 49:554–561

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 21971155 and 12004009) and the Key Research Project of Henan Provincial Higher Education (Grant Nos. 20A430002 and 21A430001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4483 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Xue, Y. & Xu, L. Interfacial interactions and enhanced optoelectronic properties of GaN/perovskite heterostructures: insight from first-principles calculations. J Mater Sci 56, 11352–11363 (2021). https://doi.org/10.1007/s10853-021-06014-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06014-w