Abstract
In this study, we explored the structural, electronic, optical, and transport properties of the GaN/perovskite heterostructures using density functional theory combined with non-equilibrium Green’s function calculations. Four interfacial configurations have been studied, and the interfacial properties were discussed on the basis of the optimal theoretical situation. The Ga-polar N-termination interface was found to be the most favorable interfacial configuration, with an interfacial cohesive energy of 0.4 eV/Å2, whereas that of the other three heterostructures was less than 0.1 eV/Å2. Results showed that the interfacial nitrogen atoms had a significant impact on the structural stability and electronic properties via interfacial hybridizations. Furthermore, the influence of segregated dopants at the interface on device performance was also studied. The interfacial doping strategy proposed in this study demonstrated improved optoelectronic properties. Therefore, these results provide theoretical guidelines for developing high-performance of GaN/perovskite heterostructures in perovskite solar cells.
Graphical abstract
The atomic structure, electronic and optical properties of GaN (0001)/MAPbI3 (110) interfaces with a lattice mismatch less than 3% were analyzed using first-principles calculations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM (2015) Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347:519–522
Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L (2017) Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat Commun 81:5330
Kim J, Chung C-H, Hong K-H (2016) Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites. Phys Chem Chem Phys 18:27143–27147
Wang P, Wu Y, Cai B, Ma Q, Zheng X, Zhang W-H (2019) Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv Funct Mater 29:1807661
National Renewable Energy Laboratory (NREL), Best research-cell efficiency chart https://www.nrel.gov/pv/cell-efficiency.html. Accessed Sept 2020
Berhe TA, Su W-N, Chen C-H, Pan C-J, Cheng J-H, Chen H-M, Tsai M-C, Chen L-Y, Dubale AA, Hwang B-J (2016) Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci 9:323–356
Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3:8970–8980
Boyd CC, Cheacharoen R, Leijtens T, McGehee MD (2019) Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev 119:3418–3451
Cho A-N, Park N-G (2017) Impact of interfacial layers in perovskite solar cells. Chemsuschem 10:3687–3704
Yang G, Tao H, Qin P, Ke W, Fang G (2016) Recent progress in electron transport layers for efficient perovskite solar cells. J Mater Chem A 4:3970–3990
Sekimoto T, Matsui T, Nishihara T, Uchida R, Sekiguchi T, Negami T (2019) Influence of a hole-transport layer on light-induced degradation of mixed organic-inorganic halide perovskite solar cells. ACS Appl Energ Mater 2:5039–5049
Wang S, Liu B, Zhu Y, Ma Z, Liu B, Miao X, Ma R, Wang C (2018) Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer. Sol Energy 169:335–342
Courtier NE, Cave JM, Foster JM, Walker AB, Richardson G (2019) How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energy Environ Sci 12:396–409
Zhao Y, Zhang H, Ren X, Zhu HL, Huang Z, Ye F, Ouyang D, Cheah KW, Jen KY, Choy WCH (2018) Thick TiO2-based top electron transport layer on perovskite for highly efficient and stable solar cells. ACS Energy Lett 3:2891–2898
Choi J, Song S, Hörantner MT, Snaith HJ, Park T (2016) Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells. ACS Nano 10:6029–6036
Liu C, Cai M, Yang Y, Arain Z, Ding Y, Shi X, Shi P, Ma S, Hayat T, Alsaedi A, Wu J, Dai S, Cao G (2019) A C60/TiOx bilayer for conformal growth of perovskite films for UV stable perovskite solar cells. J Mater Chem A 7:11086–11094
Wilkes GC, Deng X, Choi JJ, Gupta MC (2018) Laser annealing of TiO2 electron-transporting layer in perovskite solar cells. ACS Appl Mater Interfaces 10:41312–41317
Spalla M, Planes E, Perrin L, Matheron M, Berson S, Flandin L (2019) Alternative electron transport layer based on Al-Doped ZnO and SnO2 for perovskite solar cells: impact on microstructure and stability. ACS Appl Energ Mater 2:7183–7195
Qiu Q, Liu H, Qin Y, Ren C, Song J (2020) Efficiency enhancement of perovskite solar cells based on Al2O3-passivated nano-nickel oxide film. J Mater Sci 55:13881–13891
Ma J, Lin Z, Guo X, Zhou L, Su J, Zhang C, Yang Z, Chang J, Liu S, Hao Y (2019) Low-temperature solution-processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20%. Sol RRL 3:1900096
Jeong S, Seo S, Park H, Shin H (2019) Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%. Chem Commun 55:2433–2436
Dong L, Pang T, Yu J, Wang Y, Zhu W, Zheng H, Yu J, Jia R, Chen Z (2019) Performance-enhanced solar-blind photodetector based on a CH3NH3PbI3/β-Ga2O3 hybrid structure. J Mater Chem C 7:14205–14211
Patil P, Mann DS, Nakate UT, Hahn Y-B, Kwon S-N, Na S-I (2020) Hybrid interfacial ETL engineering using PCBM-SnS2 for high-performance p-i-n structured planar perovskite solar cells. Chem Eng J 397:125504
Singh R, Giri A, Pal M, Thiyagarajan K, Kwak J, Lee J-J, Jeong U, Cho K (2019) Perovskite solar cells with an MoS2 electron transport layer. J Mater Chem A 7:7151–7158
Li J, Liu H (2018) Magnetism investigation of GaN monolayer doped with group VIII B transition metals. J Mater Sci 53:15986–15994. https://doi.org/10.1007/s10825-020-01512-7
Lay S, Mercier F, Boichot R, Giusti G, Pons M, Blanquet E (2020) Prediction of dislocation density in AlN or GaN films deposited on (0001) sapphire. J Mater Sci 55:9152–9162. https://doi.org/10.1016/j.jallcom.2020.157810
Zhou H, Mei J, Xue M, Song Z, Wang H (2017) High-stability, self-powered perovskite photodetector based on a CH3NH3PbI3/GaN heterojunction with C60 as an electron transport layer. J Phys Chem C 121:21541–21545
Wang Y, Zheng D, Li L, Zhang Y (2018) Enhanced efficiency of flexible GaN/perovskite solar cells based on the piezo-phototronic effect. ACS Appl Energ Mater 1:3063–3069
Zhao L, Gao Y, Su M, Shang Q, Liu Z, Li Q, Wei Q, Li M, Fu L, Zhong Y, Shi J, Chen J, Zhao Y, Qiu X, Liu X, Tang N, Xing G, Wang X, Shen B, Zhang Q (2019) Vapor-phase incommensurate heteroepitaxy of oriented single-crystal CsPbBr3 on GaN: toward integrated optoelectronic applications. ACS Nano 13:10085–10094
Wei H, Wu J, Qiu P, Liu S, He Y, Peng M, Li D, Meng Q, Zaera F, Zheng X (2019) Plasma-enhanced atomic-layer-deposited gallium nitride as an electron transport layer for planar perovskite solar cells. J Mater Chem A 7:25347–25354
Lim KTP, Deakin C, Ding B, Bai X, Griffin P, Zhu T, Oliver RA, Credgington D (2019) Encapsulation of methylammonium lead bromide perovskite in nanoporous GaN. APL Mater 7:021107
Shao D, Zhu W, Xin G, Lian J, Sawyer S (2019) Inorganic vacancy-ordered perovskite Cs2SnCl6:Bi/GaN heterojunction photodiode for narrowband, visible-blind UV detection. Appl Phys Lett 115:121106
Wierzbowska M (2020) Mechanism of segmentation of lead halide perovskite at interfaces with GaN and ZnO. Appl Surf Sci 514:145924
Ergen O, Gilbert SM, Pham T, Turner Sally J, Tan Mark Tian Z, Worsley Marcus A, Zettl A (2017) Graded bandgap perovskite solar cells. Nat Mater 16:522–525
Bonef B, Catalano M, Lund C, Denbaars SP, Nakamura S, Mishra UK, Kim MJ, Keller S (2017) Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive x-ray spectroscopy and atom probe tomography. Appl Phys Lett 110:143101
Duff AI, Lymperakis L, Neugebauer J (2014) Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces: an ab initio approach. Phys Rev B 89:085307
Liu X, Ji D, Lu Y (2015) Scattering induced by Al segregation in AlGaN/GaN heterostructures. Appl Phys Lett 107:072105
Guo Y, Xue Y, Li X, Li C, Song H, Niu Y, Liu H, Mai X, Zhang J, Guo Z (2019) Effects of transition metal substituents on interfacial and electronic structure of CH3NH3PbI3/TiO2 interface: a first-principles comparative study. Nanomaterials 9:966
Feng H-J, Paudel TR, Tsymbal EY, Zeng XC (2015) Tunable optical properties and charge separation in CH3NH3SnxPb1–xI3/TiO2-based planar perovskites cells. J Am Chem Soc 137:8227–8236
Shu H, Niu XH, Ding XJ, Wang Y (2019) Effects of strain and surface modification on stability, electronic and optical properties of GaN monolayer. Appl Surf Sci 479:475–481
Shu H (2020) Structural stability, tunable electronic and optical properties of two-dimensional WS2 and GaN heterostructure: First-principles calculations. Mater Sci Eng B 261:114672
Shu H, Zhao M, Sun M (2019) Theoretical Study of GaN/BP van der Waals nanocomposites with strain-enhanced electronic and optical properties for optoelectronic applications. ACS Appl Nano Mater 2:6482–6491
Abdulraheem Z, Jappor HR (2020) Tailoring the electronic and optical properties of SnSe2/InS van der Waals heterostructures by the biaxial strains. Phys Lett A 384:126090
Almayyali AOM, Kadhim BB, Jappor HR (2020) Stacking impact on the optical and electronic properties of two-dimensional MoSe2/PtS2 heterostructures formed by PtS2 and MoSe2 monolayers. Chem Phys 532:110679
Almayyali AOM, Kadhim BB, Jappor HR (2020) Tunable electronic and optical properties of 2D PtS2/MoS2 van der Waals heterostructure. Physica E 118:113866
Abed Al-Abbas SS, Muhsin MK, Jappor HR (2019) Two-dimensional GaTe monolayer as a potential gas sensor for SO2 and NO2 with discriminate optical properties. Superlattices Microstruct 135:106245
Attia AA, Jappor HR (2019) Tunable electronic and optical properties of new two-dimensional GaN/BAs van der Waals heterostructures with the potential for photovoltaic applications. Chem Phys Lett 728:124–131
Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50
Wimmer E, Christensen M, Eyert V, Wolf W, Reith D, Rozanska X, Freeman C, Saxe P (2016) Computational materials engineering: recent applications of VASP in the MedeA® software environment. J Korean Ceram Soc 53:263–272
Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979
Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868
Pack JD, Monkhorst HJ (1977) “Special points for Brillouin-zone integrations”-a reply. Phys Rev B 16:1748–1749
Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621
Caldeweyher E, Bannwarth C, Grimme S (2017) Extension of the D3 dispersion coefficient model. J Chem Phys 147:034112
Neugebauer J, Scheffler M (1992) Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys Rev B 46:16067–16080
Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov PA, Vej-Hansen UG, Lee M-E, Chill ST, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard MLN, Martinez U, Blom A, Brandbyge M, Stokbro K (2019) QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J Phys: Condens Matter 32:015901
Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys: Condens Matter 14:2745–2779
van Setten MJ, Giantomassi M, Bousquet E, Verstraete MJ, Hamann DR, Gonze X, Rignanese GM (2018) The PseudoDojo: training and grading A 85 element optimized norm-conserving pseudopotential table. Comput Phys Commun 226:39–54
Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658
Mosconi E, Ronca E, Angelis De (2014) F First-principles investigation of the TiO2/Organohalide perovskites interface: the role of interfacial chlorine. J Phys Chem Lett 5:2619–2625
Haruyama J, Sodeyama K, Han L, Tateyama Y (2016) Surface properties of CH3NH3PbI3 for perovskite solar cells. Acc Chem Res 49:554–561
Acknowledgements
This research was supported by the National Natural Science Foundation of China (Grant Nos. 21971155 and 12004009) and the Key Research Project of Henan Provincial Higher Education (Grant Nos. 20A430002 and 21A430001).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Handling Editor: Yaroslava Yingling.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Guo, Y., Xue, Y. & Xu, L. Interfacial interactions and enhanced optoelectronic properties of GaN/perovskite heterostructures: insight from first-principles calculations. J Mater Sci 56, 11352–11363 (2021). https://doi.org/10.1007/s10853-021-06014-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-021-06014-w