Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microcrystalline cellulose (MCC) powder was selected as a natural reinforcement for a commercial acrylic adhesive widely used in the field of art protection and restoration (Paraloid B72). In particular, various amounts (from 5 to 30 wt%) of MCC were melt compounded with Paraloid B72 to prepare new thermoplastic polymer composites for the cultural heritage conservation field. Scanning electron microscopy showed that MCC flakes are uniformly dispersed within the matrix at all the tested compositions, without preferential orientation. Thermogravimetric analysis evidenced an increase of thermal stability due to the MCC introduction, even at low filler amounts, while DSC measurements demonstrated that the glass transition temperature progressively increases with the MCC content. Interestingly, DMTA analysis revealed a stabilizing effect on the material produced by microcellulose addition, with an increase of the storage modulus and a decrease of the thermal expansion coefficient, in proportion to the filler loading. Moreover, MCC addition determined an increase of the elastic modulus and creep stability with respect to the neat resin, and an enhancement of fracture toughness (K IC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mills JS, White R (1994) The organic chemistry of museum objects, 2nd edn. Butterworth, Oxford

    Google Scholar 

  2. Van Oosten T, Shashoua Y, Waentig F (2002) Plastics in arts: history, technology, preservation. Kölner Beiträge zur Restaurierung und Konservierung von Kunst- und Kulturgut Band 15. Siegl, Munich

    Google Scholar 

  3. Robson M (1992) Early advances in the use of acrylic resins for the conservation of antiquities. In: Allen NS, Edge M, Horie CV (eds) Polymers in conservation. Royal Society of Chemistry, Cambridge, p 184

    Google Scholar 

  4. Taylor TH (1984) In situ repair of architectural glass, adhesives and consolidants. International Institute for Conservation, London

    Google Scholar 

  5. Amoroso GG, Fassina V (1973) Stone decay and conservation. Elsevier, Amsterdam

    Google Scholar 

  6. Chiantore O, Lazzari M (2001) Photo-oxidative stability of paraloid acrylic protective polymers. Polymer 42(1):17–27

    Article  Google Scholar 

  7. Lazzari M, Chiantore O (2000) Thermal-ageing of paraloid acrylic protective polymers. Polymer 41(17):6447–6455

    Article  Google Scholar 

  8. Sale D (2011) Yellowing and appearance of conservation adhesives for poly(methyl methacrylate): a reappraisal of 20-year-old samples and test methods. In: Adhesives and consolidants for conservation, Ottawa

  9. Chapman S, Mason D (2003) Literature review: the use of Paraloid B-72 as a surface consolidant for stained glass. J Am Inst Conserv 42(11):381–392

    Google Scholar 

  10. Down JL, MacDonald MA, Tétreault J, Williams RS (1996) Adhesive testing at the Canadian Conservation Institute: an evaluation of selected poly(vinyl acetate) and acrylic adhesives. Stud Conserv 41(1):19–44

    Article  Google Scholar 

  11. Hansen EF, Derrick MR, Schilling MR, Garcia R (1991) The effects of solution application on some mechanical and physical properties of thermoplastic amorphous polymers used in conservation: poly(vinyl acetate)s. J Am Inst Conserv 30(2):203–213

    Article  Google Scholar 

  12. Keskkula H, Paul DR (1986) Miscibility of polyethyloxazoline with thermoplastic polymers. J Appl Polym Sci 31(5):1189–1197

    Article  Google Scholar 

  13. Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Composites A 40(6–7):791–799

    Article  Google Scholar 

  14. Shanks RA, Hodzic A, Ridderhof D (2006) Composites of poly(lactic acid) with flax fibers modified by interstital polymerization. J Appl Polym Sci 99(23):5–13

    Google Scholar 

  15. Gaonkar SM, Kulkarni PR (1989) Microcrystalline cellulose from coconut shells. Acta Polym 40(4):292–294

    Article  Google Scholar 

  16. Padmadisastra Y, Gonda I (1989) Preliminary studies of the development of a direct compression cellulose excipient from bagasse. J Pharm Sci 78(6):508–514

    Article  Google Scholar 

  17. Thummanukitcharoen P, Limpanart S, Srikulkit K (2011) Preparation of organosilane treated microcrystalline cellulose (SIMCC) and the polypropylene/SIMCC composite. In: 18th International conference on composite materials, Jeju Island

  18. Chauhan YP, Sapkal RS, Sapkal VS, Zamre GS (2009) Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries). Int J Chem Sci 7(2):681–688

    Google Scholar 

  19. Das K, Ray D, Bandyopadhyay NR, Sengupta S (2010) Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J Polym Environ 18(3):355–363

    Article  Google Scholar 

  20. Qui W, Endo T, Hirotsu T (2006) Interfacial interaction, morphology and tensile properties of a composite of highly crystalline cellulose and maleated polypropylene. J Appl Polym Sci 102(38):30–41

    Google Scholar 

  21. Dorigato A, D’Amato M, Pegoretti A (2012) Thermo-mechanical properties of high density polyethylene—fumed silica nanocomposites: effect of filler surface area and treatment. J Polym Res 19:9889–9899

    Article  Google Scholar 

  22. Dorigato A, Pegoretti A, Quaresimin M (2011) Thermo-mechanical characterization of epoxy/clay nanocomposites as matrices for carbon/nanoclay/epoxy laminates. Mater Sci Eng A 528:6324–6333

    Article  Google Scholar 

  23. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  Google Scholar 

  24. Kalaitzidou K, Fukushima H, Drzal LT (2007) Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites. Composites A 38:1675–1682

    Article  Google Scholar 

  25. Dorigato A, Morandi S, Pegoretti A (2012) Effect of nanoclay addition on the fiber/matrix adhesion in epoxy/glass composites. J Compos Mater 46:1439–1451

    Article  Google Scholar 

  26. Kiziltas A, Gardner DJ, Han Y, Yang HS (2011) Dynamic mechanical behavior and thermal properties of microcrystalline cellulose (MCC)-filled nylon 6 composites. Thermochim Acta 519(1–2):38–43

    Article  Google Scholar 

  27. Mathew AP, Oksman K, Sain MM (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025

    Article  Google Scholar 

  28. Lavengood RE, Goettler LA (1971) Stiffness of non-aligned fiber reinforced composites. US Government R&D Reports, vol AD886372. National Technical Information Service, Springfield

  29. Halpin JC (1969) Stiffness and expansion estimates for oriented short fibre composites. J Compos Mater 3:732–735

    Google Scholar 

  30. Hancock BC, Clas S-D, Christensen K (2000) Micro-scale measurement of the mechanical properties of compressed pharmaceutical powders. 1: the elasticity and fracture behavior of microcrystalline cellulose. Int J Pharm 209(1–2):27–35

    Article  Google Scholar 

  31. Eichhorn SJ, Young RJ (2001) The young’s modulus of a microcrystalline cellulose. Cellulose 8:197–207

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Cataldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cataldi, A., Dorigato, A., Deflorian, F. et al. Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration. J Mater Sci 49, 2035–2044 (2014). https://doi.org/10.1007/s10853-013-7892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7892-6

Keywords

Navigation