Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Microscopy and microanalysis of inorganic polymer cements. 1: remnant fly ash particles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Accurate and precise electron microscopic analysis of the remnant solid precursor (fly ash and blast furnace slag) particles embedded in an inorganic polymer cement (or “fly ash geopolymer”) provides critical information regarding the process of gel binder formation. Differential solubility of phases in the fly ash is seen to be important, with insoluble mullite crystals becoming exposed by the retreat of the surrounding glassy phases. High-iron particles appear to remain largely unreacted, and the use of sectioned and polished specimens provides a view of the inside of these particles, which can show a wide variety of phase separation morphologies and degrees of intermixing of high iron and other phases. Calcium appears to be active in the process of alkali activation of ash/slag blends, although the competitive and/or synergistic effects of ash and slag particles during the reaction process remain to be understood in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Taylor M, Tam C, Gielen D (2006) Energy efficiency and CO2 emissions from the global cement industry. International Energy Agency, Paris

    Google Scholar 

  2. Duxson P, Provis JL, Lukey GC, van Deventer JSJ (2007) Cem Concr Res 37:1590

    Article  CAS  Google Scholar 

  3. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) J Mater Sci 42:2917. doi:https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  4. Lloyd RR (2008) Ph.D. thesis, University of Melbourne, Australia

  5. Palomo A, Banfill PFG, Fernandéz-Jiménez A, Swift DS (2005) Adv Cem Res 17:143

    Article  CAS  Google Scholar 

  6. Provis JL, van Deventer JSJ (2007) Chem Eng Sci 62:2309

    Article  CAS  Google Scholar 

  7. Provis JL, van Deventer JSJ (2007) Chem Eng Sci 62:2318

    Article  CAS  Google Scholar 

  8. Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2007) Langmuir 23:9076

    Article  CAS  Google Scholar 

  9. Criado M, Fernández-Jiménez A, de la Torre AG, Aranda MAG, Palomo A (2007) Cem Concr Res 37:671

    Article  CAS  Google Scholar 

  10. Criado M, Fernández-Jiménez A, Palomo A, Sobrados I, Sanz J (2008) Micropor Mesopor Mater 109:525

    Article  CAS  Google Scholar 

  11. Rahier H, Wastiels J, Biesemans M, Willem R, van Assche G, van Mele B (2007) J Mater Sci 42:2982. doi:https://doi.org/10.1007/s10853-006-0568-8

    Article  CAS  Google Scholar 

  12. De Silva P, Sagoe-Crentsil K, Sirivivatnanon V (2007) Cem Concr Res 37:512

    Article  CAS  Google Scholar 

  13. Fernández-Jiménez A, Palomo A, Criado M (2005) Cem Concr Res 35:1204

    Article  CAS  Google Scholar 

  14. Gieré R, Carleton LE, Lumpkin GR (2003) Am Miner 88:1853

    Article  Google Scholar 

  15. Vassileva SV, Menendez R, Alvarez D, Diaz-Somoano M, Martinez-Tarazona MR (2003) Fuel 82:1793

    Article  CAS  Google Scholar 

  16. Hemmings RT, Berry EE (1988) In: McCarthy GJ, Glasser FP, Roy DM, Hemmings RT (eds) Materials research society symposium proceedings, vol 113. Materials Research Society, Pittsburgh, pp 3–38

  17. Lee WKW, van Deventer JSJ (2002) Colloids Surf A 211:49

    Article  CAS  Google Scholar 

  18. Keyte LM (2008) Ph.D. thesis, University of Melbourne, Australia

  19. Keyte LM, Lukey GC, van Deventer JSJ (2005) In: Nizhou A (ed) Proceedings of WasteEng 2005, Albi, France, 2005. CD-ROM proceedings

  20. van Deventer JSJ, Provis JL, Duxson P, Lukey GC (2007) J Hazard Mater A139:506

    Article  CAS  Google Scholar 

  21. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Colloids Surf A 269:47

    Article  CAS  Google Scholar 

  22. Duxson P, Provis JL, Lukey GC, Separovic F, van Deventer JSJ (2005) Langmuir 21:3028

    Article  CAS  Google Scholar 

  23. Provis JL, Duxson P, Lukey GC, van Deventer JSJ (2005) Chem Mater 17:2976

    Article  CAS  Google Scholar 

  24. Wei S, Zhang Y-S, Wei L, Liu Z-Y (2004) Cem Concr Res 34:935

    Article  CAS  Google Scholar 

  25. Zhang Y, Sun W, Jin Z, Yu H, Jia Y (2007) Mater Lett 61:1552

    Article  CAS  Google Scholar 

  26. Davidovits J, Sawyer JL (1985) US Patent 4,509,985, US Patent Office

  27. Li Z, Liu S (2007) J Mater Civil Eng 19:470

    Article  CAS  Google Scholar 

  28. Yip CK, van Deventer JSJ (2003) J Mater Sci 38:3851. doi:https://doi.org/10.1023/A:1025904905176

    Article  CAS  Google Scholar 

  29. Allahverdi A, Škvára F (2001) Ceram-Silik 45:81

    CAS  Google Scholar 

  30. Buchwald A, Hilbig H, Kaps C (2007) J Mater Sci 42:3024. doi:https://doi.org/10.1007/s10853-006-0525-6

    Article  CAS  Google Scholar 

  31. Lecomte I, Henrist C, Liégeois M, Maseri F, Rulmont A, Cloots R (2006) J Eur Ceram Soc 26:3789

    Article  CAS  Google Scholar 

  32. Bejaoui S, Bary B (2007) Cem Concr Res 37:469

    Article  CAS  Google Scholar 

  33. Lloyd RR, Provis JL, van Deventer JSJ (2008) J Mater Sci, in press (Part 2 of this series). doi:https://doi.org/10.1007/s10853-008-3078-z

    Article  CAS  Google Scholar 

  34. Fernández-Jiménez A, de la Torre AG, Palomo A, Lopez-Olmo G, Alonso MM, Aranda MAG (2006) Fuel 85:1960

    Article  CAS  Google Scholar 

  35. Kjellsen KO, Monsøy A, Isachsen K, Detwiler RJ (2003) Cem Concr Res 33:611

    Article  CAS  Google Scholar 

  36. Goodhew P, Humphreys J, Beanland R (2001) Electron microscopy and analysis, 3rd edn. Taylor and Francis, London

    Google Scholar 

  37. Egerton RF (2005) Physical principles of electron microscopy. Springer, New York

    Book  Google Scholar 

  38. Scrivener KL (2004) Cem Concr Compos 26:935

    Article  CAS  Google Scholar 

  39. Drouin D, Couture AR, Joly D, Tastet X, Aimez V, Gauvin R (2007) Scanning 29:92

    Article  CAS  Google Scholar 

  40. Joy DC (1998) J Microsc 191:74

    Article  CAS  Google Scholar 

  41. Williams DB, Carter CB (1996) Transmission electron microscopy: a text book for materials science. Plenum Press, New York

    Book  Google Scholar 

  42. Aramaki S, Roy R (1962) J Am Ceram Soc 45:229

    Article  CAS  Google Scholar 

  43. MacDowell JF, Beall GH (1969) J Am Ceram Soc 52:17

    Article  CAS  Google Scholar 

  44. Gomes S, François M (2000) Cem Concr Res 30:175

    Article  CAS  Google Scholar 

  45. Patil MD, Eaton HC, Tittlebaum ME (1984) Fuel 63:788

    Article  CAS  Google Scholar 

  46. Fernández-Jiménez A, Lachowski EE, Palomo A, Macphee DE (2004) Cem Concr Compos 26:1001

    Article  CAS  Google Scholar 

  47. Xu H, Lukey GC, van Deventer JSJ (2004) In: Malhotra VM (ed) Proceedings of 8th CANMET/ACI international conference on fly ash, silica fume, slag and natural pozzolans in concrete. American Concrete Institute, Las Vegas, pp 797–820

  48. Kutchko BG, Kim AG (2006) Fuel 85:2537

    Article  CAS  Google Scholar 

  49. Bayukov OA, Anshits NN, Balaev AD, Sharonova OM, Rabchevskii EV, Petrov MI, Anshits AG (2005) Inorg Mater 41:50

    Article  CAS  Google Scholar 

  50. Warren CJ, Dudas MJ (1989) Sci Total Environ 84:223

    Article  CAS  Google Scholar 

  51. Hinckley CC, Smith GV, Twardowska H, Saporoschenko M, Shiley RH, Griffen RA (1980) Fuel 59:161

    Article  CAS  Google Scholar 

  52. Vereshchagina TA, Anshits NN, Maksimov NG, Vereshchagin SN, Bayukov OA, Anshits AG (2004) Glass Phys Chem 30:247

    Article  CAS  Google Scholar 

  53. Perera DS, Cashion JD, Blackford MG, Zhang Z, Vance ER (2007) J Eur Ceram Soc 27:2697

    Article  CAS  Google Scholar 

  54. Swaddle TW (2001) Coord Chem Rev 219–221:665

    Article  Google Scholar 

  55. Wang S-D, Scrivener KL (1995) Cem Concr Res 25:561

    Article  CAS  Google Scholar 

  56. Brough AR, Atkinson A (2002) Cem Concr Res 32:865

    Article  CAS  Google Scholar 

  57. Fredericci C, Zanotto ED, Ziemath EC (2000) J Non-Cryst Solids 273:64

    Article  CAS  Google Scholar 

  58. Tsuyuki N, Koizumi K (1999) J Am Ceram Soc 82:2188

    Article  CAS  Google Scholar 

  59. Brew DRM, Glasser FP (2005) Cem Concr Res 35:85

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Partial financial support for this work was provided by the Australian Research Council (ARC), through Discovery Project grants awarded to J.S.J. van Deventer and through the Particulate Fluids Processing Centre, a Special Research Centre of the ARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Provis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd, R.R., Provis, J.L. & van Deventer, J.S.J. Microscopy and microanalysis of inorganic polymer cements. 1: remnant fly ash particles. J Mater Sci 44, 608–619 (2009). https://doi.org/10.1007/s10853-008-3077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3077-0

Keywords

Navigation