Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Combinatorial Generation of Planar Sets

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We introduce a multi-dimensional generalization of the Euclidean algorithm and show how it is related to digital geometry and particularly to the generation and recognition of digital planes. We show how to associate with the steps of the algorithm geometrical extensions of substitutions, i.e., rules that replace faces by unions of faces, to build finite sets called patterns. We examine several of their combinatorial, geometrical and topological properties. This work is a first step toward the incremental computation of patterns that locally fit a digital surface for the accurate approximation of tangent planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Reveillès, J.-P.: Géométrie discrète, calculs en nombres entiers et algorithmique. Thèse d’etat, Université Louis Pasteur (1991)

  2. Françon, J., Schramm, J.-M., Tajine, M.: Recognizing arithmetic straight lines and planes. In: Proc. DGCI, pp. 139–150 (1996)

  3. Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity—a review. Discret. Appl. Math. 155(4), 468–495 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lachaud, J.-O., Meyron, J., Roussillon, T.: An optimized framework for plane-probing algorithms. J. Math. Imaging Vis. 62, 718–736 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lachaud, J.-O., Provençal, X., Roussillon, T.: Two plane-probing algorithms for the computation of the normal vector to a digital plane. J. Math. Imaging Vis. 59, 23–39 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Troesch, A.: Interprétation géométrique de l’algorithme d’Euclide et reconnaissance de segments. Theor. Comput. Sci. 115(2), 291–319 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Klette, R., Rosenfeld, A.: Digital straightness—a review. Discret. Appl. Math. 139(1–3), 197–230 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Labbé, S., Reutenauer, C.: A d-dimensional extension of Christoffel words. Discret. Comput. Geom. 54(1), 152–181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berthé, V., Fernique, T.: Brun expansions of stepped surfaces. Discret. Math. 311(7), 521–543 (2011)

  10. Berthé, V., Lacasse, A., Paquin, G., Provençal, X.: A study of Jacobi–Perron boundary words for the generation of discrete planes. Theor. Comput. Sci. 502, 118–142 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berthé, V., Domenjoud, É., Jamet, D., Provençal, X.: Fully Subtractive algorithm, tribonacci numeration and connectedness of discrete planes. Research Institute for Mathematical Sciences, Lecture note Kokyuroku Bessatu B, vol. 46, pp. 159–174 (2014)

  12. Jamet, D., Lafrenière, N., Provençal, X.: Generation of digital planes using generalized continued-fractions algorithms. In: Proc. DGCI, pp. 45–56 (2016)

  13. Berthé, V., Jamet, D., Jolivet, T., Provençal, X.: Critical connectedness of thin arithmetical discrete planes. In: Proc. DGCI, pp. 107–118 (2013)

  14. Domenjoud, E., Vuillon, L.: Geometric palindromic closure. Uniform Distrib. Theory 7(2), 109–140 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Domenjoud, E., Laboureix, B., Vuillon, L.: Facet connectedness of arithmetic discrete hyperplanes with non-zero shift. In: Proc. DGCI (2019)

  16. Domenjoud, E., Provençal, X., Vuillon, L.: Facet connectedness of discrete hyperplanes with zero intercept: the general case. In: Proc. DGCI, pp. 1–12 (2014)

  17. Arnoux, P., Ito, S.: Pisot substitutions and Rauzy fractals. Bull. Belgian Math. Soc. Simon Stevin 8(2), 181–208 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fernique, T.: Multidimensional Sturmian sequences and generalized substitutions. Int. J. Found. Comput. Sci. 17, 575–600 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fernique, T.: Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recogn. 42(10), 2229–2238 (2009)

    Article  MATH  Google Scholar 

  20. Meyron, J., Roussillon, T.: Approximation of Digital Surfaces by a Hierarchical Set of Planar Patches. In: IAPR Second International Conference on Discrete Geometry and Mathematical Morphology, Strasbourg, France, pp. 409–421 (2022)

  21. Labbé, S.: \(3 \)-dimensional continued fraction algorithms cheat sheets. arXiv:1511.08399 (2015)

  22. Lu, J.-T., Roussillon, T., Coeurjolly, D.: A New Lattice-based Plane-probing Algorithm. In: IAPR Second International Conference on Discrete Geometry and Mathematical Morphology, Strasbourg, France (2022)

  23. Roussillon, T., Lu, J.-T., Lachaud, J.-O., Coeurjolly, D.: Delaunay property and proximity results of the L-algorithm. Research report, Université de Lyon (2022). https://hal.archives-ouvertes.fr/hal-03719592

  24. Arnoux, P., Furukado, M., Harriss, E., Ito, S.: Algebraic numbers, free group automorphisms and substitutions on the plane. Trans. Am. Math. Soc. 363, 4651–4699 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jolivet, T.: Combinatorics of Pisot Substitutions. Ph.d. thesis, Université Paris Diderot, University of Turku. https://jolivet.org/timo/docs/thesis_jolivet.pdf (2013)

Download references

Acknowledgements

This work has been funded by PARADIS ANR-18-CE23-0007-01 research grant.

Author information

Authors and Affiliations

Authors

Contributions

Tristan Roussillon wrote the whole paper and prepared all figures.

Corresponding author

Correspondence to Tristan Roussillon.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roussillon, T. Combinatorial Generation of Planar Sets. J Math Imaging Vis 65, 702–717 (2023). https://doi.org/10.1007/s10851-023-01152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-023-01152-z

Keywords

Navigation