Abstract
We introduce a multi-dimensional generalization of the Euclidean algorithm and show how it is related to digital geometry and particularly to the generation and recognition of digital planes. We show how to associate with the steps of the algorithm geometrical extensions of substitutions, i.e., rules that replace faces by unions of faces, to build finite sets called patterns. We examine several of their combinatorial, geometrical and topological properties. This work is a first step toward the incremental computation of patterns that locally fit a digital surface for the accurate approximation of tangent planes.
Similar content being viewed by others
References
Reveillès, J.-P.: Géométrie discrète, calculs en nombres entiers et algorithmique. Thèse d’etat, Université Louis Pasteur (1991)
Françon, J., Schramm, J.-M., Tajine, M.: Recognizing arithmetic straight lines and planes. In: Proc. DGCI, pp. 139–150 (1996)
Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity—a review. Discret. Appl. Math. 155(4), 468–495 (2007)
Lachaud, J.-O., Meyron, J., Roussillon, T.: An optimized framework for plane-probing algorithms. J. Math. Imaging Vis. 62, 718–736 (2020)
Lachaud, J.-O., Provençal, X., Roussillon, T.: Two plane-probing algorithms for the computation of the normal vector to a digital plane. J. Math. Imaging Vis. 59, 23–39 (2017)
Troesch, A.: Interprétation géométrique de l’algorithme d’Euclide et reconnaissance de segments. Theor. Comput. Sci. 115(2), 291–319 (1993)
Klette, R., Rosenfeld, A.: Digital straightness—a review. Discret. Appl. Math. 139(1–3), 197–230 (2004)
Labbé, S., Reutenauer, C.: A d-dimensional extension of Christoffel words. Discret. Comput. Geom. 54(1), 152–181 (2015)
Berthé, V., Fernique, T.: Brun expansions of stepped surfaces. Discret. Math. 311(7), 521–543 (2011)
Berthé, V., Lacasse, A., Paquin, G., Provençal, X.: A study of Jacobi–Perron boundary words for the generation of discrete planes. Theor. Comput. Sci. 502, 118–142 (2013)
Berthé, V., Domenjoud, É., Jamet, D., Provençal, X.: Fully Subtractive algorithm, tribonacci numeration and connectedness of discrete planes. Research Institute for Mathematical Sciences, Lecture note Kokyuroku Bessatu B, vol. 46, pp. 159–174 (2014)
Jamet, D., Lafrenière, N., Provençal, X.: Generation of digital planes using generalized continued-fractions algorithms. In: Proc. DGCI, pp. 45–56 (2016)
Berthé, V., Jamet, D., Jolivet, T., Provençal, X.: Critical connectedness of thin arithmetical discrete planes. In: Proc. DGCI, pp. 107–118 (2013)
Domenjoud, E., Vuillon, L.: Geometric palindromic closure. Uniform Distrib. Theory 7(2), 109–140 (2012)
Domenjoud, E., Laboureix, B., Vuillon, L.: Facet connectedness of arithmetic discrete hyperplanes with non-zero shift. In: Proc. DGCI (2019)
Domenjoud, E., Provençal, X., Vuillon, L.: Facet connectedness of discrete hyperplanes with zero intercept: the general case. In: Proc. DGCI, pp. 1–12 (2014)
Arnoux, P., Ito, S.: Pisot substitutions and Rauzy fractals. Bull. Belgian Math. Soc. Simon Stevin 8(2), 181–208 (2001)
Fernique, T.: Multidimensional Sturmian sequences and generalized substitutions. Int. J. Found. Comput. Sci. 17, 575–600 (2006)
Fernique, T.: Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recogn. 42(10), 2229–2238 (2009)
Meyron, J., Roussillon, T.: Approximation of Digital Surfaces by a Hierarchical Set of Planar Patches. In: IAPR Second International Conference on Discrete Geometry and Mathematical Morphology, Strasbourg, France, pp. 409–421 (2022)
Labbé, S.: \(3 \)-dimensional continued fraction algorithms cheat sheets. arXiv:1511.08399 (2015)
Lu, J.-T., Roussillon, T., Coeurjolly, D.: A New Lattice-based Plane-probing Algorithm. In: IAPR Second International Conference on Discrete Geometry and Mathematical Morphology, Strasbourg, France (2022)
Roussillon, T., Lu, J.-T., Lachaud, J.-O., Coeurjolly, D.: Delaunay property and proximity results of the L-algorithm. Research report, Université de Lyon (2022). https://hal.archives-ouvertes.fr/hal-03719592
Arnoux, P., Furukado, M., Harriss, E., Ito, S.: Algebraic numbers, free group automorphisms and substitutions on the plane. Trans. Am. Math. Soc. 363, 4651–4699 (2011)
Jolivet, T.: Combinatorics of Pisot Substitutions. Ph.d. thesis, Université Paris Diderot, University of Turku. https://jolivet.org/timo/docs/thesis_jolivet.pdf (2013)
Acknowledgements
This work has been funded by PARADIS ANR-18-CE23-0007-01 research grant.
Author information
Authors and Affiliations
Contributions
Tristan Roussillon wrote the whole paper and prepared all figures.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Roussillon, T. Combinatorial Generation of Planar Sets. J Math Imaging Vis 65, 702–717 (2023). https://doi.org/10.1007/s10851-023-01152-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-023-01152-z