Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Information-Theoretic Registration with Explicit Reorientation of Diffusion-Weighted Images

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present an information-theoretic approach to the registration of images with directional information, especially for diffusion-weighted images (DWIs), with explicit optimization over the directional scale. We call it locally orderless registration with directions (LORDs). We focus on normalized mutual information as a robust information-theoretic similarity measure for DWI. The framework is an extension of the LOR-DWI density-based hierarchical scale-space model that varies and optimizes the integration, spatial, directional and intensity scales. As affine transformations are insufficient for inter-subject registration, we extend the model to nonrigid deformations. We illustrate that the proposed model deforms orientation distribution functions (ODFs) correctly and is capable of handling the classic complex challenges in DWI registrations, such as the registration of fiber crossings along with kissing, fanning, and interleaving fibers. Our experimental results clearly illustrate a novel promising regularizing effect, which comes from the nonlinear orientation-based cost function. We show the properties of the different image scales, and we show that including orientational information in our model makes the model better at retrieving deformations in contrast to standard scalar-based registration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. Contact us or henrikgjensen@gmail.com for the code or examples.

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables. Dover, New York (1974)

    MATH  Google Scholar 

  2. Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ants). Insight j 2, 1–35 (2009)

    Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

  4. Darkner, S., Sporring, J.: Generalized partial volume: an inferior density estimator to parzen windows for normalized mutual information. In: IPMI, LNCS, vol. 6801, pp. 436–447. Springer, Berlin (2011)

  5. Darkner, S., Sporring, J.: Locally orderless registration. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1437–1450 (2013)

    Article  Google Scholar 

  6. Darkner, S., Pai, A., Liptrot, M., Sporring, J.: Collocation for diffeomorphic deformations in medical image registration. IEEE Trans. Pattern Anal. Mach. Intell. 40(7), 1570–1583 (2018). https://doi.org/10.1109/TPAMI.2017.2730205

    Article  Google Scholar 

  7. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Magn. Reson. Med. 58(3), 497–510 (2007)

    Article  Google Scholar 

  8. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  9. Gallier, J., Quaintance, J.: Differential Geometry and Lie Groups. A second course, Geometry and Computing, vol. 13. Springer, Berlin (2020)

  10. Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., Nimmo-Smith, I.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 8 (2014)

    Article  Google Scholar 

  11. Helmholtz, H.: Uber integrale der hydrodynamischen gleichungen, welcher der wirbelbewegungen entsprechen’’ (on integrals of the hydrodynamic equations which correspond to vortex motions). Journal für die reine und angewandte Mathematik 55(8), 25–55 (1858)

    MathSciNet  Google Scholar 

  12. Hermosillo, G., Chefd’Hotel, C., Faugeras, O.: Variational methods for multimodal image matching. Int. J. Comput. Vis. 50(3), 329–343 (2002)

    Article  Google Scholar 

  13. Irfanoglu, M.O., Nayak, A., Jenkins, J., Hutchinson, E.B., Sadeghi, N., Thomas, C.P., Pierpaoli, C.: Dr-tamas: diffeomorphic registration for tensor accurate alignment of anatomical structures. Neuroimage 132, 439–454 (2016)

    Article  Google Scholar 

  14. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: Fsl. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  15. Jensen, H.G., Lauze, F., Nielsen, M., Darkner, S.: Locally orderless registration for diffusion weighted images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 305–312. Springer, Berlin (2015)

  16. Johansen-Berg, H., Behrens, T.E.: Diffusion MRI: From Quantitative Measurement to In Vivo Neuroanatomy. Academic Press, London (2013)

    Google Scholar 

  17. Jupp, P., Mardia, K.: A unified view of the theory of directional statistics, 1975–1988. Int. Stat. Rev./Revue Internationale de Statistique 261–294 (1989)

  18. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)

    Article  Google Scholar 

  19. Koenderink, J.J., Van Doorn, A.J.: The structure of locally orderless images. Int. J. Comput. Vis. 31(2), 159–168 (1999)

    Article  Google Scholar 

  20. O’Donnell, L.J., Daducci, A., Wassermann, D., Lenglet, C.: Advances in computational and statistical diffusion MRI. NMR in Biomedicine (2017)

  21. Riyahi-Alam, S., Peroni, M., Baroni, G., Riboldi, M.: Regularization in deformable registration of biomedical images based on divergence and curl operators. Methods Inf. Med. 53(01), 21–28 (2014)

    Article  Google Scholar 

  22. Rueckert, D., Aljabar, P., Heckemann, R.A., Hajnal, J.V., Hammers, A.: Diffeomorphic registration using b-splines. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 702–709. Springer, Berlin (2006)

  23. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  24. Schmidt, M.: minfunc: unconstrained differentiable multivariate optimization in matlab. Software available at https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html (2005)

  25. Semechko, A.: Suite of functions to perform uniform sampling of a sphere. Software available at https://www.mathworks.com/matlabcentral/fileexchange/37004-suite-of-functions-to-perform-uniform-sampling-of-a-sphere (2012). Accessed 2017

  26. Sporring, J., Darkner, S.: Jacobians for Lebesgue registration for a range of similarity measures. Department of Computer Science, University of Copenhagen, Tech. Rep 4 (2011)

  27. Sra, S., Karp, D.: The multivariate Watson distribution: maximum-likelihood estimation and other aspects. J. Multivar. Anal. 114, 256–269 (2013)

    Article  MathSciNet  Google Scholar 

  28. Studholme, C., Hill, D.L., Hawkes, D.J.: An overlap invariant entropy measure of 3d medical image alignment. Pattern Recogn. 32(1), 71–86 (1999)

    Article  Google Scholar 

  29. Tao, X., Miller, J.V.: A method for registering diffusion weighted magnetic resonance images. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006, pp. 594–602. Springer, Berlin (2006)

  30. Tournier, J., Calamante, F., Connelly, A., et al.: Mrtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)

    Article  Google Scholar 

  31. Treiber, J.M., White, N.S., Steed, T.C., Bartsch, H., Holland, D., Farid, N., McDonald, C.R., Carter, B.S., Dale, A.M., Chen, C.C.: Characterization and correction of geometric distortions in 814 diffusion weighted images. PLoS ONE 11(3), e0152472 (2016)

    Article  Google Scholar 

  32. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

  33. Van Hecke, W., Leemans, A., D’Agostino, E., De Backer, S., Vandervliet, E., Parizel, P.M., Sijbers, J.: Nonrigid coregistration of diffusion tensor images using a viscous fluid model and mutual information. IEEE Trans. Med. Imaging 26(11), 1598–1612 (2007)

    Article  Google Scholar 

  34. Wang, Y., Gupta, A., Liu, Z., Zhang, H., Escolar, M.L., Gilmore, J.H., Gouttard, S., Fillard, P., Maltbie, E., Gerig, G., et al.: DTI registration in atlas based fiber analysis of infantile Krabbe disease. Neuroimage 55(4), 1577–1586 (2011)

    Article  Google Scholar 

  35. Wang, Y., Yu, Q., Liu, Z., Lei, T., Guo, Z., Qi, M., Fan, Y.: Evaluation on diffusion tensor image registration algorithms. Multimed. Tools Appl. 75(13), 8105–8122 (2016)

    Article  Google Scholar 

  36. Wang, Y., Shen, Y., Liu, D., Li, G., Guo, Z., Fan, Y., Niu, Y.: Evaluations of diffusion tensor image registration based on fiber tractography. Biomed. Eng. Online 16(1), 9 (2017)

    Article  Google Scholar 

  37. Wells, W., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)

    Article  Google Scholar 

  38. Yeo, B.T., Vercauteren, T., Fillard, P., Peyrat, J.M., Pennec, X., Golland, P., Ayache, N., Clatz, O.: DT-REFinD: diffusion tensor registration with exact finite-strain differential. IEEE Trans. Med. Imaging 28(12), 1914–1928 (2009)

    Article  Google Scholar 

  39. Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C.: Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med. Image Anal. 10(5), 764–785 (2006)

    Article  Google Scholar 

  40. Zhang, P., Niethammer, M., Shen, D., Yap, P.T.: Large deformation diffeomorphic registration of diffusion-weighted imaging data. Med. Image Anal. 18(8), 1290–1298 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Center for Stochastic Geometry and Advanced Bioimaging, funded by grant 8721 from the Villum Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lauze.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, H.G., Lauze, F. & Darkner, S. Information-Theoretic Registration with Explicit Reorientation of Diffusion-Weighted Images. J Math Imaging Vis 64, 1–16 (2022). https://doi.org/10.1007/s10851-021-01050-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-021-01050-2

Keywords

Navigation