Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Interreflections in Computer Vision: A Survey and an Introduction to Spectral Infinite-Bounce Model

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Interreflections are observed on concave objects or when multiple objects are located closely. In a vision system, interreflections can largely affect color values captured by the camera. Due to this fact, modeling interreflections is important for many vision applications. In this paper, we consider the problem of treating and modeling interreflections in the domain of computer vision. First, a survey of existing approaches in the state of the art is given. These approaches are detailed, discussed and compared. Most of the state of the art models take into consideration only two bounces of light between surface elements. We, afterward, introduce a new interreflection model based on radiometric definitions. This model is the first one that takes into consideration an infinite number of light bounces between surface elements while providing image RGB values as a result. The accuracy of our model is studied by comparing it to real camera outputs. Thanks to our new model, the importance of using infinite bounces of light while studying interreflection, instead of only two bounces, is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Also called étendue.

References

  1. Cohen, M.F., Greenberg, D.P.: The hemi-cube: a radiosity solution for complex environments. In: ACM SIGGRAPH Computer Graphics, vol. 19, pp. 31–40, ACM (1985)

  2. Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. Ak Peters, Natick (2001)

    Book  MATH  Google Scholar 

  3. Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  4. Forsyth, D., Zisserman, A.: Mutual illumination. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1989. Proceedings CVPR’89, pp. 466–473, IEEE, (1989)

  5. Forsyth, D., Zisserman, A.: Shape from shading in the light of mutual illumination. Image Vision Comput. 8(1), 42–49 (1990)

    Article  Google Scholar 

  6. Nayar, S.K., Ikeuchi, K., Kanade, T.: Shape from interreflections. Int. J. Comput. Vision 6(3), 173–195 (1991)

    Article  Google Scholar 

  7. Drew, M.S., Funt, B.V.: Calculating surface reflectance using a single-bounce model of mutual reflection. In: Third International Conference on Computer Vision, 1990. Proceedings, pp. 394–399, IEEE, (1990)

  8. Ho, J., Funt, B.V., Drew, M.S.: Separating a color signal into illumination and surface reflectance components: theory and applications. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 966–977 (1990)

    Article  Google Scholar 

  9. Funt, B.V., Drew, M.S., Ho, J.: Color constancy from mutual reflection. Int. J. Comput. Vision 6(1), 5–24 (1991)

    Article  Google Scholar 

  10. Funt, B.V., Drew, M.S.: Color space analysis of mutual illumination. IEEE Trans. Pattern Anal. Mach. Intell. 15(12), 1319–1326 (1993)

    Article  Google Scholar 

  11. Seitz, S.M., Matsushita, Y., Kutulakos, K.N.: A theory of inverse light transport. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 2, pp. 1440–1447, IEEE (2005)

  12. Liao, M., Huang, X., Yang, R.: Interreflection removal for photometric stereo by using spectrum-dependent albedo. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 689–696, IEEE (2011)

  13. Fu, Y., Lam, A., Matsushita, Y., Sato, I., Sato, Y.: Interreflection removal using fluorescence. In: European Conference on Computer Vision, pp. 203–217, Springer (2014)

  14. Nicodemus, F.E.: Radiance. Am. J. Phys. 31(5), 368–377 (1963)

    Article  Google Scholar 

  15. Hébert, M., Hersch, R.D., Emmel, P.: Fundamentals of optics and radiometry for color reproduction. In: Kriss, M. (ed) Handbook of Digital Imaging, pp. 1021–1077. Wiley, New York (2015)

  16. Nayar, S.K., Gong, Y.: Colored interreflections and shape recovery. In: Image Understanding Workshop, pp. 333–343 (1992)

  17. Tominaga, S., Kato, K., Hirai, K., Horiuchi, T.: Spectral image analysis of mutual illumination between florescent objects. JOSA A 33(8), 1476–1487 (2016)

    Article  Google Scholar 

  18. Drew, M.S., Funt, B.V.: Variational approach to interreflection in color images. JOSA A 9(8), 1255–1265 (1992)

    Article  Google Scholar 

  19. Koenderink, J.J., Van Doorn, A.: Geometrical modes as a general method to treat diffuse interreflections in radiometry. JOSA 73(6), 843–850 (1983)

    Article  Google Scholar 

  20. Forsyth, D., Zisserman, A.: Reflections on shading. IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 671–679 (1991)

    Article  Google Scholar 

  21. Shimshoni, I., Ponce, J.: Recovering the shape of polyhedra using line-drawing analysis and complex reflectance models. Comput. Vis. Image Underst. 65(2), 296–310 (1997)

    Article  Google Scholar 

  22. Stewart, A.J., Langer, M.S.: Toward accurate recovery of shape from shading under diffuse lighting. IEEE Trans. Pattern Anal. Mach. Intell. 19(9), 1020–1025 (1997)

    Article  Google Scholar 

  23. Chandraker, M.K., Kahl, F., Kriegman, D.J.: Reflections on the generalized bas-relief ambiguity. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 788–795, IEEE (2005)

  24. Shafer, S.A.: Using color to separate reflection components. Color Res. Appl. 10(4), 210–218 (1985)

    Article  Google Scholar 

  25. Bajcsy, R., Lee, S., Leonardis, A.: Color image segmentation with detection of highlights and inter-reflections. In: SPIE/SPSS Symposium, Santa Clara (1990)

  26. Bajcsy, R., Lee, S.W., Leonardis, A.: Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation. Int. J. Comput. Vision 17(3), 241–272 (1996)

    Article  Google Scholar 

  27. Tominaga, S., Okayama, T.: A method for analyzing color images containing highlight and interreflection effects. Syst. Comput. Jpn. 28(13), 8–18 (1997)

    Article  Google Scholar 

  28. Tominaga, S., Kato, K., Hirai, K., Horiuchi, T.: Bispectral interreflection estimation of fluorescent objects. In: Color and Imaging Conference, vol. 2015, pp. 111–115, Society for Imaging Science and Technology (2015)

  29. Carroll, R., Ramamoorthi, R., Agrawala, M.: Illumination decomposition for material recoloring with consistent interreflections. In: ACM Transactions on Graphics (TOG), vol. 30, p. 43, ACM (2011)

  30. Beigpour, S., Van de Weijer, J.: Object recoloring based on intrinsic image estimation. In: 2011 International Conference on Computer Vision, pp. 327–334, IEEE (2011)

  31. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. In: ACM Transactions on Graphics (TOG), vol. 25, pp. 935–944, ACM (2006)

  32. Chen, T., Lensch, H.P., Fuchs, C., Seidel, H.-P.: Polarization and phase-shifting for 3d scanning of translucent objects. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07, pp. 1–8, IEEE (2007)

  33. Chen, T., Seidel, H.-P., Lensch, H.P.: Modulated phase-shifting for 3d scanning. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8, IEEE (2008)

  34. Gu, J., Kobayashi, T., Gupta, M., Nayar, S.K.: Multiplexed illumination for scene recovery in the presence of global illumination. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 691–698, IEEE (2011)

  35. Couture, V., Martin, N., Roy, S.: Unstructured light scanning to overcome interreflections. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1895–1902, IEEE (2011)

  36. Gupta, M., Agrawal, A., Veeraraghavan, A., Narasimhan, S.G.: A practical approach to 3d scanning in the presence of interreflections, subsurface scattering and defocus. Int. J. Comput. Vision 102(1–3), 33–55 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rada Deeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deeb, R., Muselet, D., Hebert, M. et al. Interreflections in Computer Vision: A Survey and an Introduction to Spectral Infinite-Bounce Model. J Math Imaging Vis 60, 661–680 (2018). https://doi.org/10.1007/s10851-017-0781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0781-x

Keywords

Navigation