Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed: a first one based on the Kernel Trick and a second one based on the Nonlinear Projection Trick (NPT) for even higher efficiency. Both methodologies have been validated on four different image datasets containing faces, objects and handwritten digits and compared against well-known nonlinear state-of-the-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arlandis, J., Perez-Cortes, J.C., Llobet, R.: Handwritten character recognition using the continuous distance transformation, pp. 940–943 (2000)

  2. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  3. Cai, D., He, X., Han, J.: Speed up kernel discriminant analysis. VLDB J. 20(1), 21–33 (2011)

    Article  Google Scholar 

  4. Cevikalp, H., Neamtu, M., Barkana, A.: The kernel common vector method: a novel nonlinear subspace classifier for pattern recognition. IEEE Trans. Syst. Man Cybern. B 37(4), 937–951 (2007)

    Article  Google Scholar 

  5. Cevikalp, H., Neamtu, M., Wilkes, M.: Discriminative common vector method with kernels. IEEE Trans. Neural Netw. 17(6), 1550–1565 (2006)

    Article  Google Scholar 

  6. Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative common vectors for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 4–13 (2005)

    Article  Google Scholar 

  7. Chen, G., Tsai, W.: An incremental-learning-by-navigation approach to vision-based autonomous land vehicle guidance in indoor environments using vertical line information and multiweighted generalized hough transform technique. Syst. Man Cybern. B: Cybern. IEEE Trans. 28(5), 740–748 (1998)

  8. Chen, L.F., Liao, H.Y., Ko, M.T., Lin, J.C., Yu, G.J.: A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognit. 33(10), 1713–1726 (2000)

    Article  Google Scholar 

  9. Cun, Y.L., Boser, B., Denker, J.S., Howard, R.E., Habbard, W., Jackel, L.D., Henderson, D.: Advances in neural information processing systems 2. Chap. Handwritten Digit Recognition with a Back-Propagation Network, pp. 396–404 (1990)

  10. Ferri, F., Diaz-Chito, K., Diaz-Villanueva, W.: Fast approximated discriminative common vectors using rank-one svd updates. Neural Inf. Process. 8228, 368–375 (2013)

  11. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, Cambridge (1990)

    MATH  Google Scholar 

  12. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  13. Howland, P., Wang, J., Park, H.: Solving the small sample size problem in face recognition using generalized discriminant analysis. Pattern Recognit. 39(2), 277–287 (2006)

    Article  Google Scholar 

  14. Kovacs, Z., Guerrieri, R.: Computer recognition of hand-written characters using the distance transform. Electron. Lett. 28(19), 1825–1827 (1992)

    Article  Google Scholar 

  15. Kwak, N.: Nonlinear projection trick in kernel methods: an alternative to the kernel trick. IEEE Trans. Neural Netw. Learn. Syst. 24(12), 2113–2119 (2013)

    Article  Google Scholar 

  16. Liu, Q., Cheng, J., Lu, H., Ma, S.: Modeling face appearance with nonlinear independent component analysis. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004, pp. 761–766 (2004)

  17. Martinez, A., Benavente, R.: The ar face database. Technical Report 24, Computer Vision Center CVC (1998)

  18. Nene, S., Nayar, S., Murase, H.: Columbia object image library (coil-100). Technical Report CUCS-006-96, Department of Computer Science, Columbia University (1996)

  19. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: WACV94, pp. 138–142 (1994)

  20. Schlkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  21. Schlkopf, B., Smola, A., Mller, K.: Nonlinear component analysis as a kernel eigenvalue problem. Technical Report 44, Max Planck Institute for Biological Cybernetics, Tbingen, Germany (1996)

  22. Schlkopf, B., Smola, A., Mller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  23. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  24. Tamura, A., Zhao, Q.: Rough common vector: A new approach to face recognition. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 2366–2371 (2007)

  25. van der Heijden, F., Duin, R.P.W., de Ridder, D., Tax, D.M.: Classification, Parameter Estimation and State Estimation: An Engineering Approach Using Matlab. Wiley, Hoboken (2004)

    Book  MATH  Google Scholar 

  26. Wechsler, H., Phillips, P., Bruce, V., Fogelman, F., Huang, T.E.: Face recognition: From theory to applications. NATO ASI Ser. F Comput. Syst. Sci. 163, 446–456 (1998)

  27. Xiong, T., Ye, J., Li, Q., Cherkassky, V., Janardan, R.: Efficient kernel discriminant analysis via qr decomposition. In: Proceedings of the 17th International Conference on Neural Information Processing Systems, NIPS’04, pp. 1529–1536 (2004)

  28. Yang, M.: Kernel eigenfaces vs. kernel fisherfaces: Face recognition using kernel methods. In: Proceedings of the 5th International Conference on Automatic Face Gesture Recognition, pp. 215–220 (2002)

  29. Zheng, J., Huang, Q., Chen, S., Wang, W.: Efficient kernel discriminative common vectors for classification. Vis. Comput. 31(5), 643–655 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerine Diaz-Chito.

Appendix

Appendix

Table 1 presents the list of acronyms of the document.

Table 1 List of acronyms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz-Chito, K., del Rincón, J.M., Hernández-Sabaté, A. et al. Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction. J Math Imaging Vis 60, 512–524 (2018). https://doi.org/10.1007/s10851-017-0771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0771-z

Keywords

Navigation