Abstract
Geometrical optical illusions have been object of many studies due to the possibility they offer to understand the behavior of low-level visual processing. They consist in situations in which the perceived geometrical properties of an object differ from those of the object in the visual stimulus. Starting from the geometrical model introduced by Citti and Sarti (J Math Imaging Vis 24(3):307–326, 2006), we provide a mathematical model and a computational algorithm which allows to interpret these phenomena and to qualitatively reproduce the perceived misperception.
Similar content being viewed by others
References
Angelucci, A., Levitt, J.B., Walton, E.J., Hupe, J.M., Bullier, J., Lund, J.S.: Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 22(19), 8633–8646 (2002)
Bekkers, E., Duits, R., Berendschot, T., ter Haar Romeny, B.: A multi-orientation analysis approach to retinal vessel tracking. J. Math. Imaging Vis. 49(3), 583–610 (2014)
Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Co. (2000)
Bigun, J.: Optimal orientation detection of linear symmetry. In: Proc. of the IEEE-First International Conference on Computer Vision, pp. 433–438, London, June 8–11 (1987)
Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127 (1997)
Brox, T., Weickert, J., Burgeth, B., Mrázek, P.: Nonlinear structure tensors. Image Vis. Comput. 24(1), 41–55 (2006)
Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24(3), 307–326 (2006)
Colman, A.M.: A Dictionary of Psychology. Oxford University Press, Oxford (2015)
Coren, S., Girgus, J.S.: Seeing is Deceiving: The Psychology of Visual Illusions. Lawrence Erlbaum, Hillsdale, NJ (1978)
Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. JOSA A 2(7), 1160–1169 (1985)
DeAngelis, G.C., Ohzawa, I., Freeman, R.D.: Receptive-field dynamics in the central visual pathways. Trends Neurosci. 18(10), 451–458 (1995)
Duits, R., Felsberg, M., Granlund, G., ter Haar Romeny, B.: Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the euclidean motion group. Int. J. Comput. Vis. 72(1), 79–102 (2007)
Eagleman, D.M.: Visual illusions and neurobiology. Nat. Rev. Neurosci. 2(12), 920–926 (2001)
Ehm, W., Wackermann, J.: Modeling geometric-optical illusions: a variational approach. J. Math. Psychol. 56(6), 404–416 (2012)
Favali, M., Citti, G., Sarti, A.: Local and global gestalt laws: a neurally based spectral approach. Neural Comput. 29(2), 394–422 (2017)
Felsberg, M.: Adaptive filtering using channel representations. In: Florack, L., Duits, R., Jongbloed, G., van Lieshout, M.C., Davies, L. (eds.) Mathematical Methods for Signal and Image Analysis and Representation, pp. 31–48. Springer-Verlag London (2012)
Fermüller, C., Malm, H.: Uncertainty in visual processes predicts geometrical optical illusions. Vis. Res. 44(7), 727–749 (2004)
Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proceedings of ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, pp. 281–305 (1987)
Franken, E., van Almsick, M., Rongen, P., Florack, L., ter Haar Romeny, B.: An efficient method for tensor voting using steerable filters. In: European Conference on Computer Vision, pp. 228–240. Springer (2006)
Freeman, W.T., Adelson, E.H., et al.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)
Geisler, W.S., Kersten, D.: Illusions, perception and bayes. Nat. Neurosci. 5(6), 508–510 (2002)
Gibson, J.J.: The concept of the stimulus in psychology. Am. Psychol. 15(11), 694 (1960)
Hering, H.E.: Beiträge zur physiologie, pp. 1–5 (1861)
Hoffman, W.C.: Visual illusions of angle as an application of lie transformation groups. SIAM Rev. 13(2), 169–184 (1971)
Hubel, D.H., Wiesel, T.N.: Ferrier lecture: functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 198(1130), 1–59 (1977)
Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 1233–1258 (1987)
Jost, J.: Riemannian Geometry and Geometric Analysis. Springer Science & Business Media, Springer-Verlag Berlin Heidelberg (2008)
Kennedy, H., Martin, K., Orban, G., Whitteridge, D.: Receptive field properties of neurones in visual area 1 and visual area 2 in the baboon. Neuroscience 14(2), 405–415 (1985)
Knill, D.C., Richards, W.: Perception as Bayesian Inference. Cambridge University Press, New York (1996)
Koenderink, J.J., Van Doorn, A.: Receptive field families. Biol. Cybern. 63(4), 291–297 (1990)
Koffka, K.: Principles of Gestalt Psychology, vol. 44. Routledge, London (2013)
Lee, T.S.: Image representation using 2d gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 959–971 (1996)
Levitt, J.B., Kiper, D.C., Movshon, J.A.: Receptive fields and functional architecture of macaque v2. J. Neurophysiol. 71(6), 2517–2542 (1994)
Lubliner, J.: Plasticity Theory. Courier Corporation, North Chelmsford, MA (2008)
Marsden, J.E., Hughes, T.J.: Mathematical Foundations of Elasticity. Courier Corporation, North Chelmsford (1994)
Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings. 1998 International Conference on Image Processing, 1998. ICIP 98, pp. 259–263. IEEE (1998)
Medioni, G., Tang, C.K., Lee, M.S.: Tensor voting: theory and applications. In: Proceedings of RFIA, vol. 2000 (2000)
Mordohai, P., Medioni, G.: Tensor voting: a perceptual organization approach to computer vision and machine learning. Synth. Lect. Image Video Multimed. Process. 2(1), 1–136 (2006)
Murray, M.M., Herrmann, C.S.: Illusory contours: a window onto the neurophysiology of constructing perception. Trends Cogn. Sci. 17(9), 471–481 (2013)
Murray, M.M., Wylie, G.R., Higgins, B.A., Javitt, D.C., Schroeder, C.E., Foxe, J.J.: The spatiotemporal dynamics of illusory contour processing: combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging. J. Neurosci. 22(12), 5055–5073 (2002)
Oppel, J.J.: Uber geometrisch-optische tauschungen. Jahresbericht des physikalischen Vereins zu Frankfurt am Main (1855)
Perona, P.: Deformable kernels for early vision. IEEE Trans. Pattern Anal. Mach. Intell. 17(5), 488–499 (1995)
Petitot, J.: Neurogéométrie de la vision (2008)
Robinson, J.O.: The Psychology of Visual Illusion. Courier Corporation, Dover, Mineola, NY (2013)
Romeny, B.M.H.: Front-End Vision and Multi-Scale Image Analysis: Multi-Scale Computer Vision Theory and Applications, Written in Mathematica, vol. 27. Springer Netherlands (2008)
Sanguinetti, G., Citti, G., Sarti, A.: A model of natural image edge co-occurrence in the rototranslation group. J. Vis. 10(14), 37–37 (2010)
Sarti, A., Citti, G., Petitot, J.: The symplectic structure of the primary visual cortex. Biol. Cybern. 98(1), 33–48 (2008)
Sarti, A., Citti, G., Petitot, J.: Functional geometry of the horizontal connectivity in the primary visual cortex. J. Physiol. Paris 103(1), 37–45 (2009)
Smith, D.A.: A descriptive model for perception of optical illusions. J. Math. Psychol. 17(1), 64–85 (1978)
Song, C., Schwarzkopf, D.S., Lutti, A., Li, B., Kanai, R., Rees, G.: Effective connectivity within human primary visual cortex predicts interindividual diversity in illusory perception. J. Neurosci. 33(48), 18781–18791 (2013)
Van Almsick, M., Duits, R., Franken, E., ter Haar Romeny, B.: From stochastic completion fields to tensor voting. In: Fogh Olsen, O., Florack, L., Kuijper, A (eds.) Deep Structure, Singularities, and Computer Vision, pp. 124–134. Springer, Berlin, Heidelberg (2005)
Von Der Heyclt, R., Peterhans, E., Baurngartner, G.: Illusory contours and cortical neuron responses. Science 224, 1260–1262 (1984)
von Helmholtz, H., Southall, J.P.C.: Treatise on physiological optics. In: Southall, J.P.C (ed.) Helmholtz’s Treatise on Physiological Optics, vol. 3. Dover Publications (1962) (Anybook Ltd., Lincoln, UK, translated from 3rd German edition)
Wade, N.: The Art and Science of Visual Illusions. Routledge Kegan & Paul, London (1982)
Walker, E.H.: A mathematical theory of optical illusions and figural aftereffects. Percept. Psychophys. 13(3), 467–486 (1973)
Weickert, J.: Anisotropic Diffusion in Image Processing, vol. 1. Teubner, Stuttgart (1998)
Weiss, Y., Simoncelli, E.P., Adelson, E.H.: Motion illusions as optimal percepts. Nat. Neurosci. 5(6), 598–604 (2002)
Westheimer, G.: Illusions in the spatial sense of the eye: geometrical-optical illusions and the neural representation of space. Vis. Res. 48(20), 2128–2142 (2008)
Wundt, W.M.: Die geometrisch-optischen Täuschungen, vol. 24. BG Teubner, Leipzig (1898)
Young, R.A.: The gaussian derivative model for spatial vision: I. retinal mechanisms. Spat. Vis. 2(4), 273–293 (1987)
Zhang, J., Duits, R., Sanguinetti, G., ter Haar Romeny, B.M.: Numerical approaches for linear left-invariant diffusions on se (2), their comparison to exact solutions, and their applications in retinal imaging. Numer. Math. Theory Methods Appl. 9(01), 1–50 (2016)
Acknowledgements
This project has received funding from the European Unions Seventh Framework Programme, Marie Curie Actions- Initial Training Network, under Grant Agreement No. 607643, “Metric Analysis For Emergent Technologies (MAnET).” We would like to thank B. ter Haar Romeny, University of Technology Eindhoven, and M. Ursino, University of Bologna, for their important comments and remarks to the present work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Franceschiello, B., Sarti, A. & Citti, G. A Neuromathematical Model for Geometrical Optical Illusions. J Math Imaging Vis 60, 94–108 (2018). https://doi.org/10.1007/s10851-017-0740-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-017-0740-6