Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Second-Order Performance Analysis and Unbiased Estimation for the Fitting of Concentric Circles

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

A number of methods, both algebraic and iterative, have been developed recently for the fitting of concentric circles. Previous studies focus on first-order analysis for performance evaluation, which is appropriate only when the observation noise is small so that the bias is insignificant compared to variance. Further studies indicate that the first-order analysis does not appear sufficient in explaining and predicting the performance of an estimator for the fitting problem, especially when the noise level becomes significant. This paper extends the previous study to perform the second-order analysis and evaluate the estimation bias of several concentric circle estimators. The second-order analysis exposes important characteristics of the estimators that cannot be seen from the first-order studies. The insights gained in the theoretical study have led to the development of a new estimator that is unbiased and performs best among the algebraic solutions. An adjusted maximum likelihood estimator is also proposed that can yield an unbiased estimate while maintaining the KCR bound performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Al-Sharadqah, A.: Further statistical analysis for circle fitting algorithms. Electron. J. Stat. 8(2), 2741–2778 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Sharadqah, A., Chernov, N.: Error analysis for circle fitting algorithms. Electron. J. Stat. 3(1), 886–911 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Al-Sharadqah, A., Ho, K.C.: Solutions and evaluations for fitting of concentric circles. Signal Process. 120, 468–479 (2016)

    Article  Google Scholar 

  4. Benko, P., Kós, G., Várady, T., Andor, L., Martin, R.: Constrained fitting in reverse engineering. Comput. Aided Geom. Des. 19(3), 173–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  6. Chernov, N.: On the convergence of fitting algorithms in computer vision. J. Math. Imaging Vis. 27, 231–239 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chernov, N., Lesort, C.: Statistical efficiency of curve fitting algorithms. Comput. Stat. Data Anal. 47, 713–728 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: On the fitting of surfaces to data with covariances. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1294–1303 (2000)

    Article  Google Scholar 

  9. Chojnacki, W., Brooks, M.J., van den Hengel, A.: Rationalising the renormalisation method of Kanatani. J. Math. Imaging Vis. 14, 21–38 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dampegama, S.D.: Determination of original size of the abhayagiriya stupa. In: 21st Asian Conference on Remote Sensing (2000)

  11. Isserlis, L.: On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12(1/2), 134–139 (1918)

    Article  Google Scholar 

  12. Kanatani, K.: Renormalization for unbiased estimation. In: Proceedings 4th International Conference Computer Vision, Berlin, Germany, pp. 599–606 (1993)

  13. Kanatani, K.: Statistical bias of conic fitting and renormalization. IEEE Trans. Pattern Anal. Mach. Intell. 16, 320–326 (1994)

    Article  MATH  Google Scholar 

  14. Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier, Amsterdam (1996)

    MATH  Google Scholar 

  15. Kweon, I.S., Kim, J.S., Kim, H.-W.: A camera calibration method using concentric circles of vision applications. In: Asian Conference on Computer Vision, pp. 512–520 (2002)

  16. Leedan, Y., Meer, P.: Heteroscedastic regression in computer vision: problems with bilinear constraint. Int. J. Comput. Vis. 37, 127–150 (2000)

    Article  MATH  Google Scholar 

  17. Ma, Z., Ho, K.C.: Asymptotically efficient estimators for the fittings of coupled circles and ellipses. Dig. Signal Process. 25(2), 28–40 (2014)

    Article  MathSciNet  Google Scholar 

  18. Matei, B., Meer, P.: Reduction of bias in maximum likelihood ellipse fitting. In: 15th International Conference on Computer Vision and Pattern Recognition, vol. 3, Barcelona, Spain, pp. 802–806 (2000)

  19. O’Leary, P., Harker, M., Zsombor Murray, P.: Direct and least square fitting of coupled geometric objects for metric vision. IIEE Proc. Vis. Image Signal Process. 152, 687–694 (2005)

    Article  Google Scholar 

  20. Kanatani, K.: Statistical optimization for geometric fitting: theoretical accuracy bound and high order error analysis. Int. J. Comput. Vis. 80, 167–188 (2008)

    Article  Google Scholar 

  21. Kanatani, K., Rangarajan, P.: Hyper least squares fitting of circles and ellipses. Comput. Stat. Data Anal. 55, 2197–2208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sampson, P.D.: Fitting conic sections to very scattered data: an iterative refinement of the Bookstein algorithm. Comput. Graph. Image Process. 18, 97–108 (1982)

    Article  Google Scholar 

  23. Szpak, Z., Chojnacki, W., van den Hengel, A.: A comparison of ellipse fitting methods and implications for multiple-view geometry estimation. In: 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), pp. 1–8 (2012)

  24. Szpak, Z., Chojnacki, W., van den Hengel, A.: Guaranteed ellipse fitting with the sampson distance. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision ECCV 2012. Lecture Notes in Computer Science, vol. 7576, pp. 87–100. Springer, Berlin (2012)

    Chapter  Google Scholar 

  25. Szpak, Z., Chojnacki, W., van den Hengel, A.: Guaranteed ellipse fitting with a confidence region and an uncertainty measure for centre, axes, and orientation. J. Math. Imaging Vis. 52(2), 173–199 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yahya, A.E., Nordin, M.J.: A new technique for iris localization in iris recognition systems. J. Inf. Technol. 7, 924–929 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers and the editor for providing many suggestions that resulted in improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Al-Sharadqah.

Appendix

Appendix

Derivation of Eq. (32) First, we define

$$\begin{aligned} \alpha _{ij}=\delta _{ij}-\Delta _1 \hat{a}-{\Delta }_2 \hat{a},\qquad \beta _{ij}={\epsilon }_{ij}-\Delta _1 \hat{b}-{\Delta }_2\hat{b}, \end{aligned}$$

and

$$\begin{aligned} \zeta _{ij}= \frac{2}{ \tilde{R}_i}\tilde{u}_{ij} \alpha _{ij} +\frac{2}{ \tilde{R}_i}\tilde{v}_{ij}\beta _{ij} + \frac{\alpha _{ij}^2}{\tilde{R}_i^2}+\frac{\beta _{ij}^2}{\tilde{R}_i^2}. \end{aligned}$$

Now, for each \(i=1\), 2 and \(j=1,\ldots ,n_i\), expanding the distance \(d_{ij}\) to the second-order terms gives

$$\begin{aligned} d_{ij} =\tilde{R}_i \sqrt{1+\zeta _{ij}} - \tilde{R}_i- \Delta _1 \hat{R}_i-\Delta _2 \hat{R}_i. \end{aligned}$$

This expression can be simplified further using the approximation

$$\begin{aligned} \sqrt{1+\zeta _{ij}}&\approx 1+ \frac{1}{2} \zeta _{ij}-\frac{1}{8} \zeta _{ij}^2\\&\approx 1+ \frac{2}{ 2\tilde{R}_i}\tilde{u}_{ij} \alpha _{ij} +\frac{2}{ 2\tilde{R}_i}\tilde{v}_{ij}\beta _{ij} + \frac{\alpha _{ij}^2}{2\tilde{R}_i^2}+\frac{ \beta _{ij}^2}{2\tilde{R}_i^2}\\&\qquad -\frac{1}{8}\left( \frac{2}{\tilde{R}_i}\tilde{u}_{ij} \alpha _{ij} +\frac{2}{ \tilde{R}_i}\tilde{v}_{ij}\beta _{ij}\right) ^2. \end{aligned}$$

Keeping all terms of order \(\mathscr {O}_\mathrm{P}(\sigma ^2)\) and discarding the less significant terms in \(\sqrt{1+\zeta _{ij}}\), the above expression becomes

$$\begin{aligned}&\approx 1+ \frac{2}{ 2\tilde{R}_i}\tilde{u}_{ij} \alpha _{ij} +\frac{2}{ 2\tilde{R}_i}\tilde{v}_{ij}\beta _{ij} + \frac{(\delta _{ij}-\Delta _1 \hat{a})^2}{2\tilde{R}_i^2}\\&\qquad +\frac{ ({\epsilon }_{ij}-\Delta _1 \hat{b})^2}{2\tilde{R}_i^2} \\&\qquad -\frac{1}{2\tilde{R}_i^2}\left( \tilde{u}_{ij} (\delta _{ij}-\Delta _1 \hat{a}) +\tilde{v}_{ij}({\epsilon }_{ij}-\Delta _1 \hat{b})\right) ^2 \\&\approx 1+ \frac{1}{\tilde{R}_i}\tilde{u}_{ij} \alpha _{ij} +\frac{1}{ \tilde{R}_i}\tilde{v}_{ij}\beta _{ij} + \frac{\left( 1-\tilde{u}_{ij}^2\right) (\delta _{ij}-\Delta _1 \hat{a})^2}{2\tilde{R}_i^2}\\&\qquad +\frac{ \left( 1-\tilde{v}_{ij}^2\right) ({\epsilon }_{ij}-\Delta _1 \hat{b})^2}{2\tilde{R}_i^2}\\&\qquad -\frac{2}{2\tilde{R}_i^2}\, \tilde{u}_{ij}\tilde{v}_{ij} (\delta _{ij}-\Delta _1 \hat{a}) ({\epsilon }_{ij}-\Delta _1 \hat{b}). \end{aligned}$$

Since \(1-\tilde{u}_{ij}^2=\tilde{v}_{ij}^2\), we conclude

$$\begin{aligned} d_{ij}&=\tilde{R}_i\sqrt{1+\zeta _{ij}}-\hat{R}_i\\&\approx \tilde{u}_{ij} \alpha _{ij} +\tilde{v}_{ij}\beta _{ij} + \frac{\tilde{v}_{ij}^2(\delta _{ij}-\Delta _1 \hat{a})^2}{2\tilde{R}_i}\\&\qquad +\frac{ \tilde{u}_{ij}^2({\epsilon }_{ij}-\Delta _1 \hat{b})^2}{2\tilde{R}_i}\\&\qquad -\frac{2}{2\tilde{R}_i}\, \tilde{u}_{ij}\tilde{v}_{ij} (\delta _{ij}-\Delta _1 \hat{a}) ({\epsilon }_{ij}-\Delta _1 \hat{b})\\&\approx q_{ij}-\tilde{u}_{ij}{\Delta }_2 \hat{a}-\tilde{v}_{ij}{\Delta }_2 \hat{b}-{\Delta }_2 \hat{R}_i. \end{aligned}$$

Proof of Lemma 1

The first three assertions will be proven if we show

$$\begin{aligned} {\mathbb E}\left( \rho _{ij}^2\right) =\sigma ^2, \quad {\mathbb E}\left( \tau _{ij}^2\right) =\sigma ^2\tilde{h}_{ij},\quad {\mathbb E}(\tau _{ij}\rho _{ij})=0. \end{aligned}$$

Firstly, observe that for any \(j=1,\ldots ,n_i\)

$$\begin{aligned} {\mathbb E}\left( \rho _{ij}^2\right) =\tilde{\mathbf {t}}_{ij}^\mathrm{T}{\mathbb E}\left( \check{\mathbf {n}}_{ij}\check{\mathbf {n}}_{ij}^\mathrm{T}\right) \tilde{\mathbf {t}}_{ij}=\hat{\delta }_{ij} \sigma ^2 \tilde{\mathbf {t}}_{ij}^\mathrm{T}\tilde{\mathbf {t}}_{ij}= \sigma ^2, \end{aligned}$$

which comes from the identity \(\Vert \tilde{\mathbf {t}}_{ij}\Vert _2^2=\tilde{u}_{ij}^2+\tilde{v}_{ij}^2=1\). Next, we compute \({\mathbb E}(\tau _{ij}^2)\). Since \(\mathrm{cov}({\Delta }_1\hat{{\varvec{\theta }}}_\mathrm{m})=\sigma ^2\tilde{\mathbf {R}}\), then, for any \(j=1,\ldots ,n_i\), one has

$$\begin{aligned} {\mathbb E}(\tau _{ij}^2)=\tilde{\mathbf {t}}_{ij}^\mathrm{T}{\mathbb E}\left( {\Delta }_1\hat{{\varvec{\theta }}}_\mathrm{m}{\Delta }_1\hat{{\varvec{\theta }}}_\mathrm{m}^\mathrm{T}\right) \tilde{\mathbf {t}}_{ij}=\sigma ^2\tilde{h}_{ij}. \end{aligned}$$

Finally, we compute \({\mathbb E}(\tau _{ij}\rho _{ij})\). Recall the definition of \({\Delta }_1\hat{{\varvec{\theta }}}_m=\tilde{\mathbf {K}}\mathbf {f}_1=\tilde{\mathbf {R}}\tilde{\mathbf {W}}^\mathrm{T}\mathbf {f}_1\), which can be rewritten as \(\tilde{\mathbf {R}}\mathbf {g}\) with

$$\begin{aligned} \mathbf {g}=\left[ \sum _{i=1}^2\sum _{t=1}^{n_i}\tilde{u}_{it} f_{1it},\, \sum _{i=1}^2\sum _{t=1}^{n_i} \tilde{v}_{it} f_{1it}, \sum _{n=1}^{n_1} f_{11t},\sum _{t=1}^{n_2} f_{12t} \right] ^\mathrm{T}, \end{aligned}$$

then for each \(t=1,\ldots ,n_i\), \({\mathbb E}(f_{1it}\rho _{ij})={\mathbb E}(f_{1it}(\check{\mathbf {n}}_{ij}^\mathrm{T}\tilde{\mathbf {t}}_{ij}))=0 \) for all \(j=1,\cdots ,n_i\). Thus, \({\mathbb E}(\tau _{ij}\rho _{ij})=0\).

Next, we compute the expectations of the outer products of \(\mathbf {a}_i\), \(\mathbf {b}_i\), and \(\mathbf {c}_i\) starting with \({\mathbb E}(\mathbf {a}_i\mathbf {a}_k^\mathrm{T})\). Since

$$\begin{aligned} {\mathbb E}(a_{ij} a_{kl})={\mathbb E}(\rho _{ij}^2\rho _{kl}^2)={\mathbb E}\left( \left( \tilde{\mathbf {t}}_{ij}^\mathrm{T}\check{\mathbf {n}}_{ij}\right) ^2\left( \check{\mathbf {n}}_{kl}^\mathrm{T}\tilde{\mathbf {t}}_{kl}\right) ^2\right) . \end{aligned}$$

Using the Isserlis’ Theorem [11] gives

$$\begin{aligned} {\mathbb E}(a_{ij} a_{kl})= & {} {\mathbb E}\left( \left[ \tilde{\mathbf {t}}_{ij}^\mathrm{T}\check{\mathbf {n}}_{ij}\right] ^2\right) \, {\mathbb E}\left( \left[ \check{\mathbf {n}}_{kl}^\mathrm{T}\tilde{\mathbf {t}}_{kl}\right] ^2\right) \\&+\,2\,{\mathbb E}\left( \left( \tilde{\mathbf {t}}_{ij}^\mathrm{T}\check{\mathbf {n}}_{ij}\right) \left( \check{\mathbf {n}}_{kl}^\mathrm{T}\tilde{\mathbf {t}}_{kl}\right) \right) . \end{aligned}$$

But it is easy to show that \({\mathbb E}((\tilde{\mathbf {t}}_{ij}^\mathrm{T}\check{\mathbf {n}}_{ij})^2)=\sigma ^2\) and

$$\begin{aligned} {\mathbb E}\left( \left( \tilde{\mathbf {t}}_{ij}^\mathrm{T}\check{\mathbf {n}}_{ij}\right) \left( \check{\mathbf {n}}_{kl}^\mathrm{T}\tilde{\mathbf {t}}_{kl}\right) \right) =\hat{\delta }_{ik}\hat{\delta }_{jl}\sigma ^2. \end{aligned}$$

Therefore,

$$\begin{aligned} {\mathbb E}(a_{ij} a_{kl})=\sigma ^4+2 \hat{\delta }_{ik}\hat{\delta }_{jl}\sigma ^4. \end{aligned}$$

Next, we compute \({\mathbb E}(b_{ij}b_{kl})=4{\mathbb E}\left( \tau _{ij}\rho _{ij}\tau _{kl} \rho _{kl}\right) \). The pair \((\tau _{ij},\rho _{kl})\) are uncorrelated for any choice of i and k. Besides,

$$\begin{aligned} {\mathbb E}(\rho _{ij} \rho _{kl})=\hat{\delta }_{ik}\hat{\delta }_{jl}\sigma ^2 , \text { and } {\mathbb E}(\tau _{ij}\tau _{kl})=\sigma ^2\tilde{\mathbf {t}}_{ij}^\mathrm{T}\tilde{\mathbf {R}}\tilde{\mathbf {t}}_{kl}=\sigma ^2\tilde{h}_{ijkl}. \end{aligned}$$

Therefore,

$$\begin{aligned} {\mathbb E}(b_{ij}b_{kl})=4\,{\mathbb E}\left( \tau _{ij}\tau _{kl}\right) {\mathbb E}\left( \rho _{ij} \rho _{kl}\right) =4 \sigma ^4\tilde{h}_{ijkl}\hat{\delta }_{ik}\hat{\delta }_{jl}. \end{aligned}$$

Next we evaluate \({\mathbb E}(c_{ij}c_{kl})={\mathbb E}(\tau _{ij}^2\tau _{kl}^2)\). If \(\tilde{h}_{ijij}\) is expressed by \(\tilde{h}_{ij}\), then using the general formulas of the expected value of the product of two quadratic forms of random variables [11], we obtain

$$\begin{aligned} {\mathbb E}(c_{ij}c_{kl})= & {} {\mathbb E}\left( \tau _{ij}^2\right) {\mathbb E}\left( \tau _{kl}^2\right) +2[{\mathbb E}(\tau _{ij}\tau _{kl} )]^2\\ {}= & {} \sigma ^4\left( \tilde{h}_{ij}\tilde{h}_{kl}+2\tilde{h}_{ijkl}\right) . \end{aligned}$$

In the same analog, we find

$$\begin{aligned} {\mathbb E}(a_{ij}c_{kl})={\mathbb E}\left( \tau _{ij}^2\rho _{kl}^2\right) ={\mathbb E}\left( \tau _{ij}^2\right) {\mathbb E}\left( \rho _{kl}^2\right) =\sigma ^4\tilde{h}_{ij}, \end{aligned}$$

because \(\tau _{ij}\) and \(\rho _{kl})\) are independent random variables. Finally, following the same reason, we observe that \({\mathbb E}(a_{ij}b_{kl})=-2\,{\mathbb E}(\rho _{ij}^2\tau _{kl} \rho _{kl})=0\) and also \( {\mathbb E}(b_{ij}c_{kl})=0\). From these results, we find the desired identities. This completes the proof of the lemma. \(\square \)

Derivation of Eqs. (41)–(43) The MSE of \({\Delta }_1\hat{{\varvec{\theta }}}_\mathrm{m}\) is equal to \(\sigma ^2\tilde{\mathbf {R}}\). We shall next evaluate \(\mathrm{MSE}({\Delta }_2\hat{{\varvec{\theta }}}_\mathrm{m})\). Let us define \(\check{\mathbf {a}}=(\check{\mathbf {a}}_1^\mathrm{T} , \, \check{\mathbf {a}}_2^\mathrm{T})^\mathrm{T}\) and other variables in the same manner. Then

$$\begin{aligned} {\mathbb E}(\check{\mathbf {a}}\check{\mathbf {a}}^\mathrm{T})&=\left[ \begin{array}{cc} {\mathbb E}\left( \check{\mathbf {a}}_1\check{\mathbf {a}}_1^\mathrm{T}\right) &{}\quad {\mathbb E}\left( \check{\mathbf {a}}_1\check{\mathbf {a}}_2^\mathrm{T}\right) \\ {\mathbb E}\left( \check{\mathbf {a}}_2\check{\mathbf {a}}_1^\mathrm{T}\right) &{} \quad {\mathbb E}\left( \check{\mathbf {a}}_2\check{\mathbf {a}}_2^\mathrm{T}\right) \end{array}\right] \\&=\sigma ^4\left[ \begin{array}{cc}\check{{\mathbf {1}}}_{n_1}\check{{\mathbf {1}}}_{n_1}^\mathrm{T}&{}\quad \check{{\mathbf {1}}}_{n_1}\check{{\mathbf {1}}}_{n_2}^\mathrm{T}\\ \check{{\mathbf {1}}}_{n_2}\check{{\mathbf {1}}}_{n_1}^\mathrm{T} &{}\quad \check{{\mathbf {1}}}_{n_2}\check{{\mathbf {1}}}_{n_2}^\mathrm{T} \end{array}\right] +2\sigma ^4\check{\mathbf {I}}_{n}, \end{aligned}$$

where

$$\begin{aligned} \check{\mathbf {I}}_{n}=\left[ \begin{array}{cc}\frac{1}{4\tilde{R}_1^2}\mathbf {I}_{n_1}&{}\quad {\mathbf {0}}_{n_1\times n_2}\\ {\mathbf {0}}_{n_2\times n_1} &{} \quad \frac{1}{4\tilde{R}_2^2}\mathbf {I}_{n_2} \end{array}\right] =\left[ \begin{array}{cc}\check{\mathbf {I}}_{n_1}&{}\quad {\mathbf {0}}_{n_1\times n_2}\\ {\mathbf {0}}_{n_2\times n_1} &{}\quad \check{\mathbf {I}}_{n_2} \end{array}\right] . \end{aligned}$$

Premultiplying and then postmultiplying \({\mathbb E}(\check{\mathbf {a}}\check{\mathbf {a}}^\mathrm{T})\) by \(\tilde{\mathbf {K}}\) and \(\tilde{\mathbf {K}}^\mathrm{T}\), respectively, lead to

$$\begin{aligned} \tilde{\mathbf {K}}{\mathbb E}\left( \check{\mathbf {a}}\check{\mathbf {a}}^\mathrm{T}\right) \tilde{\mathbf {K}}^\mathrm{T}=\sigma ^4\tilde{\mathbf {b}}_1\tilde{\mathbf {b}}_1^\mathrm{T} +2\sigma ^4 \tilde{\mathbf {K}}\check{\mathbf {I}}_n \tilde{\mathbf {K}}^\mathrm{T}. \end{aligned}$$
(82)

Now we compute \({\mathbb E}\left( \check{\mathbf {a}}\check{\mathbf {c}}^\mathrm{T} \right) \). It is easy to show that

$$\begin{aligned} {\mathbb E}\left( \check{\mathbf {a}}\check{\mathbf {c}}^\mathrm{T}\right)&\!=\!\left[ \! \begin{array}{cc}{\mathbb E}\left( \check{\mathbf {a}}_1\check{\mathbf {c}}_1^\mathrm{T}\right) &{}\quad {\mathbb E}\left( \check{\mathbf {a}}_1\check{\mathbf {c}}_2^\mathrm{T}\right) \\ {\mathbb E}\left( \check{\mathbf {a}}_2\check{\mathbf {c}}_1^\mathrm{T}\right) &{}\quad {\mathbb E}\left( \check{\mathbf {a}}_2\check{\mathbf {c}}_2^\mathrm{T}\right) \end{array}\!\right] \!=\!\sigma ^4\left[ \begin{array}{cc}\check{\tilde{\mathbf {h}}}_1\check{{\mathbf {1}}}_{n_1}^\mathrm{T}&{}\quad \check{\tilde{\mathbf {h}}}_1\check{{\mathbf {1}}}_{n_2}^\mathrm{T}\\ \check{\tilde{\mathbf {h}}}_2\check{{\mathbf {1}}}_{n_1}^\mathrm{T} &{}\quad \check{\tilde{\mathbf {h}}}_2\check{{\mathbf {1}}}_{n_2}^\mathrm{T} \end{array}\right] , \end{aligned}$$

and as such, if it is premultiplied and then postmultiplied by \(\tilde{\mathbf {K}}\) and \(\tilde{\mathbf {K}}^\mathrm{T}\), respectively, we obtain

$$\begin{aligned} 2\mathscr {S}\left[ \tilde{\mathbf {K}}{\mathbb E}\left( \check{\mathbf {a}}\check{\mathbf {c}}^\mathrm{T}\right) \tilde{\mathbf {K}}^\mathrm{T}\right]&= 2\mathscr {S}\left[ \sigma ^4 \tilde{\mathbf {K}}\tilde{\mathbf {h}}\left( \check{\hat{\mathbf {e}}}_3+ \check{\hat{\mathbf {e}}}_4\right) ^\mathrm{T}\right] \\&=2\sigma ^4\mathscr {S}\left[ \tilde{\mathbf {b}}_2\tilde{\mathbf {b}}_1^\mathrm{T}\right] . \end{aligned}$$

Finally, the less important but the most complicated expressions in the MSE of \({\Delta }_2 \hat{{\varvec{\theta }}}_\mathrm{m}\) come from \({\mathbb E}(\check{\mathbf {b}}\check{\mathbf {b}}^\mathrm{T})\) and \({\mathbb E}(\check{\mathbf {c}}\check{\mathbf {c}}^\mathrm{T})\). After lengthy but direct calculations, we have

$$\begin{aligned} {\mathbb E}\left[ \left( (\check{\mathbf {b}}+\check{\mathbf {c}})(\check{\mathbf {b}}+\check{\mathbf {c}})\right) ^\mathrm{T}\right] =\sigma ^4\left( \check{\tilde{\mathbf {h}}}\check{\tilde{\mathbf {h}}}^\mathrm{T}+ 2\check{\tilde{\mathbf {H}}}+4\check{\tilde{\mathbf {D}}}_{\tilde{\mathbf {h}}_1,\tilde{\mathbf {h}}_2}\right) , \end{aligned}$$

where

$$\begin{aligned} \check{\tilde{\mathbf {H}}} =\left[ \begin{array}{cc}\check{\tilde{\mathbf {H}}}_{11} &{}\quad \check{\tilde{\mathbf {H}}}_{12} \\ \check{\tilde{\mathbf {H}}}_{21} &{}\quad \check{\tilde{\mathbf {H}}}_{22} \end{array}\right] , \end{aligned}$$

and \(\check{\tilde{\mathbf {D}}}_{\tilde{\mathbf {h}}_1,\tilde{\mathbf {h}}_2}=\mathrm{diag}(\check{\tilde{\mathbf {h}}}_1, \check{\tilde{\mathbf {h}}}_2 )\). Premultiplying and postmultiplying this expression by \(\tilde{\mathbf {K}}\) and \(\tilde{\mathbf {K}}^\mathrm{T}\) give

$$\begin{aligned}&\tilde{\mathbf {K}}{\mathbb E}\left[ \left( (\check{\mathbf {b}}+\check{\mathbf {c}})(\check{\mathbf {b}}+\check{\mathbf {c})}\right) ^\mathrm{T}\right] \tilde{\mathbf {K}}^\mathrm{T}\\&\quad =\sigma ^4\tilde{\mathbf {b}}_2\tilde{\mathbf {b}}_2^\mathrm{T}+2\sigma ^4 \tilde{\mathbf {K}}\left( \check{\tilde{\mathbf {H}}}+2\check{\tilde{\mathbf {D}}}_{\tilde{\mathbf {h}}_1,\tilde{\mathbf {h}}_2}\right) \tilde{\mathbf {K}}^\mathrm{T}. \end{aligned}$$

Finally, combining all expressions together gives us the MSE of \({\Delta }_2\hat{{\varvec{\theta }}}_\mathrm{m}\).

Proof of Eq. (70)

Let \(\varvec{\varLambda }_{ij}=({\tilde{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {V}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\Delta _1 ^1\mathbf {\mathscr {M}}{\tilde{{\varvec{\phi }}}})\Delta _1^1\mathbf {\mathscr {M}}\). Then

$$\begin{aligned} {\mathbb E}\left( \varvec{\varLambda }_{ij}\right)&={\sum _{k=1}^2\sum _{l=1}^{n_k} \frac{2}{\tilde{\zeta }_k^{2}}{\mathbb E}}\nonumber \\&\quad {\left[ \left( {\tilde{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {V}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\left( \Delta _1\mathbf {z}_{kl}^\mathrm{T}{\tilde{{\varvec{\phi }}}}\right) \tilde{\mathbf {z}}_{kl}\right) \mathscr {S}\left[ \Delta _1 \mathbf {z}_{kl}\tilde{\mathbf {z}}_{kl}^\mathrm{T}\right] \right] }\nonumber \\&= 2\sigma ^2\sum _{k=1}^2\sum _{l=1}^{n_k}\frac{1}{ \tilde{\zeta }_k^{2}} \left( {\tilde{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {V}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\tilde{\mathbf {z}}_{kl}\right) \mathscr {S}\left[ \tilde{\mathbf {V}}_{kl}{\tilde{{\varvec{\phi }}}}\tilde{\mathbf {z}}_{kl}^\mathrm{T}\right] . \end{aligned}$$
(83)

Here again \(\mathscr {S}(\bullet )= (\bullet + \bullet ^\mathrm{T})/2\) is the symmetrization operator. Recall that \(\gamma _{ij}={\hat{{\varvec{\phi }}}}^\mathrm{T}\mathbf {V}_{ij}{\hat{{\varvec{\phi }}}}\) and \({\Delta }_1\gamma _{ij}\) is given in Eq. (63). We shall evaluate Eq. (69) term by term. First, consider

$$\begin{aligned} \mathbf {I}_1&:={\mathbb E}\left( \Delta _1^1 \mathbf {\mathscr {M}}\tilde{\mathbf {\mathscr {M}}}^{-}\Delta _1^1 \mathbf {\mathscr {M}}\right) \\&=4\sum _{i,k=1}^2\sum _{j=1}^{n_i} \sum _{l=1}^{n_k}\tilde{\zeta }_i^{-1}\tilde{\zeta }_k^{-1} {\mathbb E}\left( \mathscr {S}\left[ \tilde{\mathbf {z}}_{ij}\Delta _1 \mathbf {z}_{ij}^\mathrm{T}\right] \right) \tilde{\mathbf {\mathscr {M}}}^- \\&\qquad \mathscr {S}\left[ \Delta _1\, \mathbf {z}_{kl}\tilde{\mathbf {z}}_{kl}^\mathrm{T}]\right) \\&=4\sum _{i=1}^2\sum _{j=1}^{n_i} \tilde{\zeta }_i^{-2}\times {\mathbb E}\left( \mathscr {S}\left[ \tilde{\mathbf {z}}_{ij}\Delta _1 \mathbf {z}_{ij}^\mathrm{T}\right] \right) \tilde{\mathbf {\mathscr {M}}}^-\\&\qquad \left( \mathscr {S}\left[ \tilde{\mathbf {z}}_{ij}\Delta _1 \mathbf {z}_{ij}^\mathrm{T}\right] \right) . \end{aligned}$$

By direct inspection, \({\mathbb E}\bigl (\Delta _1\, \mathbf {z}_{ij}^\mathrm{T}\tilde{\mathbf {\mathscr {M}}}^-\Delta _1\,\mathbf {z}_{ij}\bigr )=\sigma ^2\mathrm{tr}(\tilde{\mathbf {\mathscr {M}}}^-\tilde{\mathbf {V}}_{ij})\), hence if we using the definition of \(\tilde{\psi }_{ij}=\tilde{\mathbf {z}}_{ij}^\mathrm{T}\tilde{\mathbf {\mathscr {M}}}^{-}\tilde{\mathbf {z}}_{ij}\), then

$$\begin{aligned} \mathbf {I}_1= & {} \sigma ^2\sum _{i=1}^2\sum _{j=1}^{n_i} \tilde{\zeta }_i^{-2}\left[ 2\mathscr {S}\left[ \tilde{\mathbf {V}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\tilde{\mathbf {M}}_{ij}\right] \right. \nonumber \\&\left. +\, \mathrm{tr}\,\left( \tilde{\mathbf {\mathscr {M}}}^-\tilde{\mathbf {V}}_{ij}\right) \tilde{\mathbf {M}}_{ij}+\tilde{\psi }_{ij}\tilde{\mathbf {V}}_{ij} \right] . \end{aligned}$$
(84)

We shall make use of an auxiliary formula below that follows from Eq. (67):

$$\begin{aligned} {\mathbb E}\left( \Delta _1\mathbf {A}\Delta _1\mathbf {z}_{ij}^\mathrm{T}\right) =-\sigma ^2\tilde{\zeta }_i^{-1} \tilde{\mathbf {\mathscr {M}}}^-\tilde{\mathbf {z}}_{ij}{\tilde{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {V}}_{ij} \end{aligned}$$
(85)

and hence \({\mathbb E}(\Delta _1\mathbf {z}_{ij}\Delta _1{\hat{{\varvec{\phi }}}}^\mathrm{T}) =-\sigma ^2\tilde{\zeta }_i^{-1}\tilde{\mathbf {V}}_{ij}{\tilde{{\varvec{\phi }}}}\tilde{\mathbf {z}}_i^\mathrm{T}\tilde{\mathbf {\mathscr {M}}}^-\). Next we compute

$$\begin{aligned} \mathbf {I}_2:= & {} {\mathbb E}\left( \Delta _1^2 \mathbf {\mathscr {M}}\tilde{\mathbf {\mathscr {M}}}^{-}\Delta _1^1\mathbf {\mathscr {M}}\right) \nonumber \\= & {} -\sum _{i=1}^2\sum _{j=1}^{n_i} \tilde{\zeta }_i^{-2}{\mathbb E}\left( \Delta _1\gamma _{ij}\tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^{-}\Delta _1^1 \mathbf {\mathscr {M}}\right) . \end{aligned}$$
(86)

Using \({\Delta }_1^1\mathbf {\mathscr {M}}=\sum _{i=1}^2 \sum _{j=1}^{n_i}\tilde{\zeta }_i^{-1}{\Delta }_1\mathbf {M}_{ij}\), and then Eqs. (63) and (85) give

$$\begin{aligned} \mathbf {I}_2&=-\sum _{i=1}^2\sum _{j=1}^{n_i}\tilde{\zeta }_i^{-2}{\mathbb E}\left[ \left( 2\left( \Delta _1{\hat{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {V}}_{ij}{\tilde{{\varvec{\phi }}}}\right) \right. \right. \\&\left. \left. \qquad +\,{\tilde{{\varvec{\phi }}}}^\mathrm{T}\Delta _1\mathbf {V}_{ij}{\tilde{{\varvec{\phi }}}}\right) \tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\Delta _1^1 \mathbf {\mathscr {M}}\right] \\&=-\sum _{i=1}^2\sum _{j=1}^{n_i}\tilde{\zeta }_i^{-2}{\mathbb E}\left( 2\left( \Delta _1{\hat{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {V}}_{ij}{\tilde{{\varvec{\phi }}}}\right) \tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\Delta _1^1\mathbf {\mathscr {M}}\right) \\&\qquad -\sum _{i=1}^2\sum _{j=1}^{n_i}\tilde{\zeta }_i^{-2}{\mathbb E}\left( \left( {\tilde{{\varvec{\phi }}}}^\mathrm{T}\Delta _1\mathbf {V}_{ij}{\tilde{{\varvec{\phi }}}}\right) \tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\Delta _1^1\mathbf {\mathscr {M}}\right) \\&=-2\sum _{i,k=1}^2\sum _{j=1}^{n_i} \sum _{l=1}^{n_k} \tilde{\zeta }_i^{-2}\tilde{\zeta }_k^{-1} \tilde{\mathbf {M}}_{ij} \mathbf {\mathscr {M}}^-{\mathbb E}\\&\qquad \left( {\Delta }_1\mathbf {M}_{kl}{\Delta }_1{\hat{{\varvec{\phi }}}}^\mathrm{T} \tilde{\mathbf {V}}_{ij}{\tilde{{\varvec{\phi }}}}\right) \\&\qquad \,-\sum _{i=1}^2\sum _{j=1}^{n_i} \tilde{\zeta }_i^{-2}{\mathbb E}\left( \left( {\tilde{{\varvec{\phi }}}}^\mathrm{T}\Delta _1\mathbf {V}_{ij}{\tilde{{\varvec{\phi }}}}\right) \tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\Delta _1^1\mathbf {\mathscr {M}}\right) \\&=4\sigma ^2\sum _{i,k=1}^2\sum _{j=1}^{n_i}\sum _{l=1}^{n_k}\tilde{\zeta }_i^{-2}\tilde{\zeta }_k^{-2}\left( {\tilde{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {V}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\tilde{\mathbf {z}}_{kl}\right) \tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\\&\qquad \mathscr {S}\left[ \tilde{\mathbf {V}}_{kl}{\tilde{{\varvec{\phi }}}}\tilde{\mathbf {z}}_{kl}^\mathrm{T}\right] -\sum _{i=1}^2\sum _{j=1}^{n_i}\tilde{\zeta }_i^{-3}\tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-{\mathbb E}\\&\qquad \left( \left( {\tilde{{\varvec{\phi }}}}^\mathrm{T}\Delta _1\mathbf {V}_{ij}{\tilde{{\varvec{\phi }}}}\right) \Delta _1\mathbf {M}_{ij}\right) . \end{aligned}$$

Now recall that \(\tilde{\mathbf {V}}_{ij}=\tilde{\mathbf {a}}_{ij}\tilde{\mathbf {a}}_{ij}^\mathrm{T}+\tilde{\mathbf {b}}_{ij}\tilde{\mathbf {b}}_{ij}^\mathrm{T}\); thus, the noisy version of \(\tilde{\mathbf {V}}_{ij}\) has the first-order error term expressed as

$$\begin{aligned} {\Delta }_1\mathbf {V}_{ij}=2\mathscr {S}\left[ \tilde{\mathbf {a}}_{ij}{\Delta }_1 \mathbf {a}_{ij}^\mathrm{T}+\tilde{\mathbf {b}}_{ij}{\Delta }_1\mathbf {b}_{ij}^\mathrm{T}\right] . \end{aligned}$$

Thus, \({\tilde{{\varvec{\phi }}}}^\mathrm{T}{\Delta }_1\mathbf {V}_{ij}{\tilde{{\varvec{\phi }}}}=({\tilde{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {T}}_{ij}{\tilde{{\varvec{\phi }}}})\delta _{ij} +({\tilde{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {S}}_{ij}{\tilde{{\varvec{\phi }}}}){\epsilon }_{ij}\). Also \({\mathbb E}(\delta _{ij}{\Delta }_1\mathbf {M}_{ij})=2 \sigma ^2\mathscr {S}[\tilde{\mathbf {a}}_{ij}\tilde{\mathbf {z}}_{ij}^\mathrm{T}]\) and \({\mathbb E}({\epsilon }_{ij}{\Delta }_1\mathbf {M}_{ij})=2\sigma ^2\mathscr {S}[\tilde{\mathbf {b}}_{ij}\tilde{\mathbf {z}}_{ij}^\mathrm{T}]\), where \(\tilde{\mathbf {a}}_{ij}\) and \(\tilde{\mathbf {b}}_{ij}\) denote the first and second columns of \(\nabla \mathbf {z}_{ij}\). Therefore, \({\mathbb E}[({\tilde{{\varvec{\phi }}}}^\mathrm{T}\Delta _1\mathbf {V}_{ij}{\tilde{{\varvec{\phi }}}})\Delta _1\mathbf {M}_{ij}]\)

$$\begin{aligned}= & {} 2\sigma ^2\left( {\tilde{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {T}}_{ij}{\tilde{{\varvec{\phi }}}}\right) \mathscr {S}\left[ \tilde{\mathbf {a}}_{ij}\tilde{\mathbf {z}}_{ij}^\mathrm{T}\right] +2\sigma ^2 \left( {\tilde{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {S}}_{ij}{\tilde{{\varvec{\phi }}}}\right) \mathscr {S}\left[ \tilde{\mathbf {b}}_{ij}\tilde{\mathbf {z}}_{ij}^\mathrm{T}\right] \nonumber \\= & {} 2\sigma ^2\mathscr {S}[\tilde{\varvec{\varGamma }}_{ij}], \end{aligned}$$
(87)

where \(\tilde{\varvec{\varGamma }}_{ij}\) is defined in Eq. (73). They imply that

$$\begin{aligned} \mathbf {I}_2= & {} 4\sigma ^2\sum _{i,k=1}^2\sum _{j=1}^{n_i} \sum _{l=1}^{n_k}\frac{1}{\tilde{\zeta }_i^{2}\tilde{\zeta }_k^{2}} \left( {\tilde{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {V}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\tilde{\mathbf {z}}_{kl}\right) \tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\nonumber \\&\quad \mathscr {S}\left[ \tilde{\mathbf {V}}_{kl}{\tilde{{\varvec{\phi }}}}\tilde{\mathbf {z}}_{kl}^\mathrm{T}\right] \nonumber \\&-2\sigma ^2\sum _{i=1}^2\sum _{j=1}^{n_i}\frac{1}{\tilde{\zeta }_i^{3}}\tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\mathscr {S}[\tilde{\varvec{\varGamma }}_{ij}]. \end{aligned}$$
(88)

Next, using \({\Delta }_2\mathbf {M}_{ij}=2\mathscr {S}[{\Delta }_2\mathbf {z}_{ij}\tilde{\mathbf {z}}_{ij}^\mathrm{T}]+{\Delta }_1\mathbf {z}_{ij}{\Delta }_1\mathbf {z}_{ij}^\mathrm{T}\) and \({\Delta }_2\mathbf {z}_{ij}=(\delta _{ij}^2+{\epsilon }_{ij}^2)\mathbf {e}_1'\) give

$$\begin{aligned} {\mathbb E}(\Delta _2^1\mathbf {\mathscr {M}})= & {} \sum _{i=1}^2\sum _{i=1}^{n_i}\tilde{\zeta }_i^{-1}{\mathbb E}(\Delta _2\mathbf {M}_{ij})\nonumber \\= & {} \sum _{i=1}^2\sum _{i=1}^{n_i}\tilde{\zeta }_i^{-1}{\mathbb E}\left( \Delta _1\mathbf {z}_{ij}\Delta _1\mathbf {z}_{ij}^\mathrm{T}+2\mathscr {S}\left[ \tilde{\mathbf {z}}_{ij}\Delta _2\mathbf {z}_{ij}^\mathrm{T}\right] \right) ,\nonumber \\ \end{aligned}$$
(89)

which simply becomes

$$\begin{aligned} {\mathbb E}\left( \Delta _2^1\mathbf {\mathscr {M}}\right)= & {} \sigma ^2\sum _{i=1}^2 \sum _{j=1}^{n_i}\frac{1}{\tilde{\zeta }_i}\left( \tilde{\mathbf {V}}_{ij}+4\mathscr {S}\left[ \mathbf {e}_1'\tilde{\mathbf {z}}_{ij}^\mathrm{T} \right] \right) . \end{aligned}$$
(90)

Lastly, we evaluate

$$\begin{aligned} {\mathbb E}\left( \Delta _2^2 \mathbf {\mathscr {M}}\right)&=-\sum _{i=1}^2\sum _{j=1}^{n_i}\tilde{\zeta }_i^{-2}{\mathbb E}(\Delta _1\gamma _{ij}\Delta _1\mathbf {M}_{ij})\\&=-\sum _{i=1}^2\sum _{j=1}^{n_i}\frac{1}{\tilde{\zeta }_i^{2}}{\mathbb E}\left( \left( 2\left( {\tilde{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {V}}_{ij}\Delta _1{\hat{{\varvec{\phi }}}}\right) \right. \right. \\&\qquad \left. \left. +\,{\tilde{{\varvec{\phi }}}}^\mathrm{T}{\Delta }_1\mathbf {V}_{ij}{\tilde{{\varvec{\phi }}}}\right) \Delta _1\mathbf {M}_{ij}\right) . \end{aligned}$$

The first term comes from Eq. (85), and the second comes from Eq. (87). Thus,

$$\begin{aligned} {\mathbb E}\left( \Delta _2^2\mathbf {\mathscr {M}}\right)= & {} 2\sigma ^2\sum _{i=1}^2\sum _{j=1}^{n_i}\left( \frac{2}{\tilde{\zeta }_i^{3}}\left( {\tilde{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {V}}_{ij}\tilde{\mathbf {\mathscr {M}}}^{-}\tilde{\mathbf {z}}_{ij}\right) \right. \nonumber \\&\left. \mathscr {S}\left[ \tilde{\mathbf {V}}_{ij}{\tilde{{\varvec{\phi }}}}\tilde{\mathbf {z}}_{ij}^\mathrm{T}\right] -\frac{1}{\tilde{\zeta }_i^{2}}\mathscr {S}[\tilde{\varvec{\varGamma }}_{ij}]\right) \end{aligned}$$
(91)

This completes the integration of Eq. (69).

To prove Eq. (70), we multiply the identities in Eqs. (84), (88), (90), and (91) by \({\tilde{{\varvec{\phi }}}}\). First,

$$\begin{aligned} \mathbf {I}_1{\tilde{{\varvec{\phi }}}}=\sigma ^2\sum _{i=1}^2\sum _{j=1}^{n_i} \tilde{\zeta }_i^{-2}\bigl (\tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-+ \tilde{\psi }_{ij}\mathbf {I}_5 \bigr )\tilde{\mathbf {V}}_{ij}{\tilde{{\varvec{\phi }}}}. \end{aligned}$$
(92)

Using the following useful identities

$$\begin{aligned} 2\mathscr {S}\left[ \tilde{\mathbf {V}}_{ij}{\tilde{{\varvec{\phi }}}}\tilde{\mathbf {z}}_{ij}^\mathrm{T}\right] {\tilde{{\varvec{\phi }}}}=\tilde{\mathbf {z}}_{ij}\left( {\tilde{{\varvec{\phi }}}}^\mathrm{T}\tilde{\mathbf {V}}_{ij}{\tilde{{\varvec{\phi }}}}\right) =\zeta _i\tilde{\mathbf {z}}_{ij},\,\, \text { and }\, \tilde{\varvec{\varGamma }}_i^\mathrm{T}{\tilde{{\varvec{\phi }}}}= {\mathbf {0}}. \end{aligned}$$

We have \(\mathbf {I}_2{\tilde{{\varvec{\phi }}}}\)

$$\begin{aligned} \mathbf {I}_2{\tilde{{\varvec{\phi }}}}&=\!2\sigma ^2\sum _{i,k=1}^2\sum _{j=1}^{n_i} \sum _{l=1}^{n_k}\tilde{\zeta }_i^{-2}\tilde{\zeta }_k^{-1}\left( \!{\tilde{{\varvec{\phi }}}}^\mathrm{T} \tilde{\mathbf {V}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\tilde{\mathbf {z}}_{kl}\!\right) \tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^- \tilde{\mathbf {z}}_{kl}\\&-\sigma ^2\sum _{i=1}^2\sum _{j=1}^{n_i}\tilde{\zeta }_i^{-3} \tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\tilde{\varvec{\varGamma }}_{ij}{\tilde{{\varvec{\phi }}}}, \end{aligned}$$

and further,

$$\begin{aligned} \mathbf {I}_2{\tilde{{\varvec{\phi }}}}&=\!2\sigma ^2\sum _{i=1}^2\sum _{j=1}^{n_i}\tilde{\zeta }_i^{-2}\tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\! \left[ \!\sum _{k=1}^2\sum _{l=1}^{n_k}\tilde{\zeta }_k^{-1}\tilde{\mathbf {M}}_{kl} \!\!\right] \tilde{\mathbf {\mathscr {M}}}^-\tilde{\mathbf {V}}_{ij}{\tilde{{\varvec{\phi }}}}\\&\quad - \sigma ^2\sum _{i=1}^2\sum _{j=1}^{n_i}\tilde{\zeta }_i^{-3}\tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\tilde{\varvec{\varGamma }}_{ij}{\tilde{{\varvec{\phi }}}}. \end{aligned}$$

Applying the definition of \(\tilde{\mathbf {\mathscr {M}}}\) and the identity \(\tilde{\mathbf {\mathscr {M}}}^-\tilde{\mathbf {\mathscr {M}}}\tilde{\mathbf {\mathscr {M}}}^-=\tilde{\mathbf {\mathscr {M}}}^-\) yields

$$\begin{aligned} \mathbf {I}_2{\tilde{{\varvec{\phi }}}}= & {} 2\sigma ^2\sum _{i=1}^2\sum _{j=1}^{n_i}\tilde{\zeta }_i^{-2}\tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^- \tilde{\mathbf {V}}_{ij}{\tilde{{\varvec{\phi }}}}\nonumber \\&- \sigma ^2\sum _{i=1}^2\sum _{j=1}^{n_i}\tilde{\zeta }_i^{-3} \tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\tilde{\varvec{\varGamma }}_{ij}{\tilde{{\varvec{\phi }}}}. \end{aligned}$$
(93)

Next

$$\begin{aligned} {\mathbb E}\left( \Delta _2^1 \mathbf {\mathscr {M}}\right) {\tilde{{\varvec{\phi }}}}=\sigma ^2\sum _{i=1}^2\sum _{j=1}^{n_i} \tilde{\zeta }_i^{-1}\left( \tilde{\mathbf {V}}_{ij}+2\tilde{\mathbf {z}}_{ij}{\mathbf {e}_1'} ^\mathrm{T} \right) {\tilde{{\varvec{\phi }}}}. \end{aligned}$$
(94)

Lastly, we apply the above identities again to evaluate

$$\begin{aligned} {\mathbb E}\left( {\Delta }_2^2\mathbf {\mathscr {M}}\right) {\tilde{{\varvec{\phi }}}}= & {} \sigma ^2\sum _{i=1}^2\sum _{j=1}^{n_i}\nonumber \\&\left( 2\tilde{\zeta }_i^{-2}\tilde{\mathbf {M}}_{ij}\tilde{\mathbf {\mathscr {M}}}^-\tilde{\mathbf {V}}_{ij}{\tilde{{\varvec{\phi }}}}-\tilde{\zeta }_i^{-2}\tilde{\varvec{\varGamma }}_{ij}\tilde{\mathbf {A}}\right) . \end{aligned}$$
(95)

Now, observing that \(\tilde{\mathbf {G}}_2^\mathrm{T} {\tilde{{\varvec{\phi }}}}={\mathbf {0}}\) and combining Eqs. (92), (93), and (94), (95) complete the derivation of Eq. (70). Note that some terms in Eq. (93) and Eq. (95) cancel each other. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sharadqah, A., Ho, K.C. Second-Order Performance Analysis and Unbiased Estimation for the Fitting of Concentric Circles. J Math Imaging Vis 57, 340–365 (2017). https://doi.org/10.1007/s10851-016-0681-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-016-0681-5

Keywords

Navigation