Abstract
We investigate the application of the nonmonotone spectral projected gradient (SPG) method to a region-based variational model for image segmentation. We consider a “discretize-then-optimize” approach and solve the resulting nonlinear optimization problem by an alternating minimization procedure that exploits the SPG2 algorithm by Birgin et al. (SIAM J Optim 10(4):1196–1211, 2000). We provide a convergence analysis and perform numerical experiments on several images, showing the effectiveness of this procedure.
Similar content being viewed by others
References
Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63(1), 85–104 (2005)
Barzilai, J., Borwein, J.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)
Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)
Birgin, E., Martínez, J., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10(4), 1196–1211 (2000)
Birgin, E., Martínez, J., Raydan, M.: Algorithm 813: SPG—software for convex-constrained optimization. ACM Trans. Math. Softw. 27(3), 340–349 (2001)
Birgin, E., Martínez, J., Raydan, M.: Spectral projected gradient methods: review and perspectives. J. Stat. Softw. 60(3) (2014)
Bonettini, S.: Inexact block coordinate descent methods with application to non-negative matrix factorization. IMA J. Numer. Anal. 31(4), 1431–1452 (2011)
Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Probl. 25(1), 015002 (2009)
Bresson, X., Esedo\(\bar{\rm {g}}\)lu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)
Brown, E., Chan, T., Bresson, X.: Completely convex formulation of the Chan-Vese image segmentation model. Int. J. Comput. Vis. 98(1), 103–121 (2012)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)
Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Chan, T., Esedo\(\bar{\rm {g}}\)lu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)
Chan, T., Sandberg, B., Moelich, M.: Some recent developments in variational image segmentation. In: Tai, X.C., Lie, K.A., Chan, T., Osher, F. (eds.) Image Processing Based on Partial Differential Equations, Mathematics and Visualization Series, pp. 175–201. Springer, Heidelberg (2005)
Dai, Y.H., Fletcher, R.: Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming. Numerische Mathematik 100(1), 21–47 (2005)
Dai, Y.H., Yuan, Y.: Analysis of monotone gradient methods. J. Ind Manag. Optim. 1(2), 181–192 (2005)
De Asmundis, R., di Serafino, D., Riccio, F., Toraldo, G.: On spectral properties of steepest descent methods. IMA J. Numer. Anal. 33(4), 1416–1435 (2013)
De Asmundis, R., di Serafino, D., Hager, W., Toraldo, G., Zhang, H.: An efficient gradient method using the Yuan steplength. Comput. Optim. Appl. 59(3), 541–563 (2014)
Esser, E.: Applications of Lagrangian–based alternating direction methods and connections to split Bregman. CAM Technical Report 09-31, UCLA, Los Angeles. ftp://ftp.math.ucla.edu/pub/camreport/cam09-31.pdf (2009)
Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–598 (2007)
Fletcher, R.: A limited memory steepest descent method. Math. Program. Ser. A 135(1–2), 413–436 (2012)
Goldstein, T., Osher, S.: The split Bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)
Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45(1–3), 272–293 (2010)
Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Num. Anal. 23(4), 707–716 (1986)
Jung, M., Kang, M., Kang, M.: Variational image segmentation models involving non-smooth data-fidelity terms. J. Sci. Comput. 59(2), 277–308 (2014)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 45(2), 577–685 (1989)
Papadakis, N., Yildizoǧlu, R., Aujol, J.F., Caselles, V.: High-dimension multilabel problems: convex or nonconvex relaxation? SIAM J. Imaging Sci. 6(4), 2603–2639 (2013)
Setzer, S.: Operator splittings, Bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92(3), 265–280 (2011)
Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)
Yildizoǧlu, R., Aujol, J.F., Papadakis, N.: Active contours without level sets. In: ICIP 2012—IEEE International Conference on Image Processing (Orlando, FL, Sept. 30–Oct. 3, 2012), pp. 2549–2552. IEEE (2012)
Yu, G., Qi, L., Dai, Y.H.: On nonmonotone Chambolle gradient projection algorithms for total variation image restoration. J. Math. Imaging Vis. 35(2), 143–154 (2005)
Zhu, M., Wright, S., Chan, T.: Duality-based algorithms for total-variation-regularized image restoration. Comput. Optim. Appl. 47(3), 377–400 (2010)
Acknowledgments
We wish to thank Giovanni Pisante for useful discussions concerning variational models for image segmentation. We are also grateful to the anonymous referees for their useful comments, which helped us to improve the quality of this work. This work was partially supported by INdAM-GNCS (2014 Project First-order optimization methods for image restoration and analysis; 2015 Project Numerical Methods for Non-convex/Nonsmooth Optimization and Applications) and by MIUR (FIRB 2010 Project No. RBFR106S1Z002).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Antonelli, L., De Simone, V. & di Serafino, D. On the Application of the Spectral Projected Gradient Method in Image Segmentation. J Math Imaging Vis 54, 106–116 (2016). https://doi.org/10.1007/s10851-015-0591-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-015-0591-y