Abstract
This article presents a distributed agent-based system that can process the visual information obtained by stereoscopic cameras. The system is embedded within a global project whose objective is to develop an intelligent environment for location and identification within dependent environments that merges with other types of technologies. In this kind of environments, vision algorithms are very costly and require a lot of time to produce a response, which is highly inconvenient since many applications can require action to be taken in real time. A multi-agent system (MAS) can automate the process of analyzing images obtained by cameras, and optimize the procedure. This study presents a MAS that can process stereoscopic images to detect and classify people by combining a series of novel techniques.
The article shows in detail the combination of techniques used to perform the detection process. The process can be subdivided into human detection, human tracking, and human behavior understanding. With the addition of a case-based reasoning (CBR) model, the system can also incorporate reasoning capabilities. The system was tested under different conditions and environments.
Similar content being viewed by others
References
Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7, 39–59 (1994)
Aggarwal, J.K., Cai, Q.: Human motion analysis: a review. Comput. Vis. Image Underst. 73(3), 428–440 (1999)
Aguilar, J.J., Torres, F., Lope, M.A.: Stereo vision for 3D measurement: accuracy analysis, calibration and industrial applications. Measurement 18(4), 193–200 (1996)
Aha, D., Kibler, D.: WInstance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)
Alahi, A., Vandergheynst, P., Bierlaire, M., Kunt, M.: Cascade of descriptors to detect and track objects across any network of cameras. Comput. Vis. Image Underst. 114(6), 624–640 (2010)
Ardissono, L., Petrone, G., Segnan, M.: A conversational approach to the interaction with Web Services. Comput. Intell. 20, 693–709 (2004)
Bahadori, S., Cesta, A., Grisetti, G., Iocchi, L., Leonel, R., Nardi, D., Oddi, A., Pecora, F., Rasconi, R.: RoboCare: pervasive intelligence for the domestic care of the elderly. Intell. Artif. 1(1), 16–21 (2004)
Bahadori, S., Iocchi, L., Leone, G.R., Nardi, D., Scozzafava, L.: Real-time people localization and tracking through fixed stereo vision. In: Lecture Notes on Artificial Intelligence (LNAI), vol. 3533, pp. 44–54 (2005)
Bajo, J., de Paz, J.F., de Paz, Y., Corchado, J.M.: Integrating case-based planning and RPTW neural networks to construct an intelligent environment for health care. Expert Syst. Appl. 36(3), Part 2, 5844–5858 (2009)
Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 42–77 (1994)
Breiman, L., Fried, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth International Group (1984)
Brenner, W., Wittig, H., Zarnekow, R.: Intelligent Software Agents: Foundations and Applications. Springer, New York (1998)
Camarinha-Matos, L., Afsarmanesh, H.: Design of a virtual community infrastructure for elderly care. In: Proc. of 3rd IFIP Working Conference on Infrastructures for Virtual Enterprises: Collaborative Business Ecosystems and Virtual Enterprises, p. 635 (2002)
Camarinha-Matos, L.M., Afsarmanesh, H.: A comprehensive modeling framework for collaborative networked organizations. J. Intell. Manuf. 18(5), 529–542 (2007)
Castanedo, F., García, J., Patricio, M.A., Molina, J.M.: Designing a visual sensor network using a multi-agent architecture. In: Advances in Soft Computing, vol. 55, pp. 430–439 (2009). doi:10.1007/978-3-642-00487-2_46
CIA: The World FactBook. ISSN 1553-8133 (2010)
Cohen, W.W.: Fast effective rule induction. In: Proceedings of the 12th International Conference on Machine Learning. Morgan Kaufmann, San Mateo (1995), pp. 115–123
Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L.: A system for video surveillance and monitoring. Tech. Rep., CMU-RI-TR-00-12. Carnegie Mellon Univ., Pittsburgh, PA (2000)
Comaniciu, D., Ramesh, V., Andmeer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25, 564–575 (2003)
Corchado, J.M., Laza, R.: Constructing deliberative agents with case-based reasoning technology. Int. J. Intell. Syst. 18(12), 1227–1241 (2003)
Corchado, J.M., Bajo, J., De Paz, Y., Tapia, D.I.: Intelligent Environment for Monitoring Alzheimer Patients, Agent Technology for Health Care. Decision Support Systems. Elsevier, Amsterdam (2006)
Corchado, J.M., Glez-Bedia, M., de Paz, Y., Bajo, J., de Paz, J.F.: Concept, formulation and mechanism for agent replanification: MRP architecture. In: Computational Intelligence. Blackwell Publishers, Malden (2008)
Corchado, J.M., Glez-Bedia, M., de Paz, Y., Bajo, J., de Paz, J.F.: Replanning mechanism for deliberative agents in dynamic changing environments. Comput. Intell. 24(2), 77–107 (2008)
Cucchiara, R., Grana, C., Piccardi, M.: Prati, A. Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1337–1342 (2003)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference Computer Vision and Pattern Recognition, USA, pp. 886–893 (2005)
Davies, E.R.: Lateral histograms for efficient object location: speed versus ambiguity. Pattern Recognit. Lett. 6(3), 189–198 (1987)
Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 1895–1923 (1998)
Duda, R.O., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973)
Eddy, S.R.: Hidden Markov models. Curr. Opin. Struct. Biol. 6(3), 361–365 (1996)
Elgammal, H.M., Harwood, D., Davis, L.S.: Non-parametric model for background subtraction. In: Proc. of the 6th European Conference on Computer (ECCV). Springer, London (2000), pp. 751–767
Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning (1996), pp. 148–156
Gallagher, M., Downs, T.: Visualization of learning in multilayer perceptron networks using principal component analysis. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 33, 28–34 (2003)
Garvey, A.J., Lesser, V.R.: Design-to-time real-time scheduling. IEEE Trans. Syst. Man Cybern.. 23, 1491–1502 (1993)
Gu, Z., Su, X., Liu, Y., Zhang, Q.: Local stereo matching with adaptive support-weight, rank transform and disparity calibration. Pattern Recognit. Lett. 29(9), 1230–1235 (2008)
Haritaoglu, I., Harwood, D., Davis, L.S.: W4: real-time surveillance of people and their activities. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 809–830 (2000)
Ivanciuc, O.: Applications of support vector machines in chemistry. In: Lipkowitz, K.B., Cundari, T.R. (eds.) Reviews in Computational Chemistry, vol. 23, pp. 291–400. Wiley, New York (2007)
Jabri, S., Duric, Z., Wechsler, H., Rosenfeld, A.: Detection and location of people in video images using adaptive fusion of color and edge information. In: Proc. of 15th International Conference on Pattern Recognition (ICPR’00), vol. 4, p. 4627 (2000)
Jeong, Y.-S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for time series classification. Pattern Recogn. (2011). doi:10.1016/j.patcog.2010.09.022
Kim, K., Chalidabhongse, T.H., Harwood, D. Davis, L.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005)
Kohlrausch, J., Rohr, K., Stiehl, H.S.: A new class of elastic body splines for nonrigid registration of medical images. J. Math. Imaging Vis. 23(3), 253–280 (2005). doi:10.1007/s10851-005-0483-7
Lima, C.A.M., Coelho, A.L.V., Von Zuben, F.J.: Hybridizing mixtures of experts with support vector machines: investigation into nonlinear dynamic systems identification. Inf. Sci. 177, 2049–2074 (2007)
Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30, 77–116 (1998)
Moeslund, T.B., Granum, E.: A survey of computer vision based human motion capture. Comput. Vis. Image Underst. 81(3), 231–268 (2001)
Moeslund, T.B., Hilton, A., Kruger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2), 90–126 (2007)
Mughadam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 696–710 (1997)
Murray, D., Little, J.J.: Using real-time stereo vision for mobile robot navigation. Auton. Robots 8(2), 161–171 (2000). doi:10.1023/A:1008987612352
Nguyena, M.H., Abbassa, H.A., Mckay, R.I.: A novel mixture of experts model based on cooperative coevolution. Neurocomputing 70, 155–163 (2006)
Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis. 46(3), 223–247 (2002)
Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods, pp. 185–208 (1999)
Platt, J.C.: Fast training of support vector machines using sequential minimal optimization, pp. 185–208 (1999)
Point Grey Research Inc.: http://www.ptgrey.com/ (2009)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)
Rangarajan, A., Hsiao, I.-T., Gindi, G.: A Bayesian joint mixture framework for the integration of anatomical information in functional image reconstruction. J. Math. Imaging Vis. 12(3), 199–217 (2000). doi:10.1023/A:1008314015446
Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of ICMAS’95. San Francisco, CA, USA (1995)
Rodríguez, S., De Paz, J.F., Bajo, J., Tapia, D.I., Pérez, B.: Stereo-MAS: multi-agent system for image stereo processing. In: Cabestany, J., et al. (eds.) IWANN’09. LNAI, vol. 5517, pp. 1256–1263. Springer, Berlin (2009). ISBN: 978-3-540-87655-7
Sato, K., Aggarwal, J.: Temporal spatio-velocity transform and its application to tracking and interaction. Comput. Vis. Image Underst. 96(2), 100–128 (2004)
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)
Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)
Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32, 1084–1093 (2007)
Vapnik, V., Lerner, A.: Pattern recognition using generalized portrait method, pp. 774–780 (1963)
Veenman, C., Reinders, M., Backer, E.: Resolving motion correspondence for densely moving points. IEEE Trans. Pattern Anal. Mach. Intell. 23(1), 54–72 (2001)
Wang, L., Hu, W., Tan, T.: Recent development in human motion analysis. Pattern Recognit. 36(3), 585–601 (2003)
Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)
Yilmaz, A., Li, X., Shah, M.: Contour based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1531–1536 (2004)
Yilmaz, A., et al.: Object tracking: a survey. ACM J. Comput. Surv. 38(4) (2006)
Zhanga, H., Lu, J.: Creating ensembles of classifiers via fuzzy clustering and deflection. 161(13), 1790–1802 (2010)
Zitnick, C.L., Kang, S.B.: Stereo for image-based rendering using image over-segmentation. Int. J. Comput. Vis. 75(1), 49–65 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Marti-Puig, P., Rodríguez, S., De Paz, J.F. et al. Stereo Video Surveillance Multi-agent System: New Solutions for Human Motion Analysis. J Math Imaging Vis 42, 176–195 (2012). https://doi.org/10.1007/s10851-011-0290-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-011-0290-2