Abstract
We present a mathematical model of perceptual completion and formation of subjective surfaces, which is at the same time inspired by the architecture of the visual cortex, and is the lifting in the 3-dimensional rototranslation group of the phenomenological variational models based on elastica functional. The initial image is lifted by the simple cells to a surface in the rototranslation group and the completion process is modeled via a diffusion driven motion by curvature. The convergence of the motion to a minimal surface is proved. Results are presented both for modal and amodal completion in classic Kanizsa images.
Similar content being viewed by others
References
L. Ambrosio and S. Masnou, “A direct variational approach to a problem arising in image recostruction,” Interfaces and Free Boundaries, Vol. 5, No. 1, pp. 63–81, 2003.
G. Barles and C. Georgelin, “A simple proof for the convergence for an approximation scheme for computing motions by mean curvature,” SIAM J. Numerical Analysis, Vol. 32, pp. 484–500, 1995.
O. Bar, H. Sompolinsky, and R. Ben-Yishai, “ Theory of orientation tuning in visual cortex” Proc. Natl. Acad. Sci. U.S.A., Vol. 92, pp. 3844–3848, 1995.
A. Bellaiche, “The tangent space in sub-Riemannian geometry” in Proceedings of the satellite Meeting of the 1st European, Congress of Mathematics ‘Journees nonholonomes: Geometrie sous-riemannienne, theorie du controle, robotique,’ Paris, France, June 30–July 1, 1992. Basel: Birkhäuser. Prog. Math., Vol. 144, pp. 1–78, 1996.
G. Bellettini and R. March, “An image segmentation variational model with free discontinuities and contour curvature,” Math. Mod. Meth. Appl. Sci., Vol. 14, pp. 1–45, 2004.
C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, “Filling-in by interpolation of vector fields and gray levels,” IEEE Transactions on Image Processing, Vol. 10, No. 8, pp. 1200–1211, 2001.
J. Bence, B. Merriman, and S. Osher, “Diffusion generated motion by mena curvature,” in Computational Crystal Growers Workshop, J. Taylor Sel. Taylor (Ed).
A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, “Fundamental solutions for non-divergence form operators on stratified groups,” Trans. Amer. Math. Soc., Vol. 356, No. 7, pp. 2709–2737, 2004.
L. Capogna, D. Danielli, and N. Garofalo, “The geometric Sobolev embedding for vector fields and the isoperimetric inequality” Comm Anal. Geo., Vol. 12, pp. 203–215, 1994.
M. Carandini and D.L. Ringach, “Predictions of a recurrent model of orientation selectivity,” Vision Res., Vol. 37, pp. 3061–3071, 1997.
G. Citti, M. Manfredini, and A. Sarti, “Neuronal oscillations in the visual cortex: Γ-convergence to the Riemannian Mumford-Shah functional” SIAM Journal of Mathematical Analysis, Vol. 35, No. 6, pp. 1394–1419, 2004.
J.G. Daugman, “Uncertainty—relation for resolution in space spatial frequency and orientation optimized by two dimensional visual cortical filters,” J. Opt. Soc. Amer., Vol. 2, No. 7, pp. 1160–1169, 1985.
E. De Giorgi, “Some remarks on Γ convergence and least square methods,” in Composite Media and Homogeniziation Theory G. Dal Masoand and G. F. Dell’Antonio (Eds.), Birkhauser Boston, 1991, pp. 153–142.
S. Esedoglu and R. March, “Segmentation with Deph but without detecting junctions,” Journal of Mathematical Imaging and Vision, Vol. 18, pp. 7–15, 2003.
A.K. Engel, P. Konig, C.M. Gray, and W. Singer, “Stimulus dependent neuronal oscillations, in cat visual cortex: Intercolumnar interaction as determined by cross-correlation analysis” European Journal of Neuroscience, Vol. 2, pp. 558–606, 1990.
A.K. Engel, A.K. Kreiter, P. Konig, and W. Singer, “Syncronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat,” PNAS, Vol. 88, pp. 6048–6052, 1991.
L. Evans, “Convergence of an Algorithm for mean curvature motion,” Indiana Univ. Math. J., Vol. 42, No. 2, pp. 553–557, 1993.
B. Franchi, R. Serapioni, and F. Serra Cassano, “On the structure of finite perimeter sets in step 2 Carnot groups,” J. Geom. Anal., Vol. 13, No. 3, pp. 421–466, 2003.
G.B. Folland, “Subelliptic estimates and function spaces on nilpotent Lie groups,” Ark. Mat., Vol. 13, pp. 161–207, 1975.
G.B. Folland, “On the Rothschild-Stein lifting theorem,” Commun. Partial Differ. Equations Vol. 2, pp. 165–191, 1977.
G.B. Folland and E.M. Stein, “Estimates for the \(\bar\partial_b\) complex and analysis on the Heisenberg group,” Comm. Pure Appl. Math., Vol. 20, pp. 429–522, 1974.
R. Goodman, “Lifting vector fields to nilpotent Lie groups,” J. Math. Pures Appl., Vol. 57, pp. 77–85, 1978.
C.D. Gilbert, A. Das, M. Ito, M. Kapadia, and G. Westheimer, “Spatial integration and cortical dynamics,” Proceedings of the National Academy of Sciences USA, Vol. 93, pp. 615–622.
C.M. Gray, P. Konig, A.K. Engel, and W. Singer, “Oscillatory responses in cat visual cortex exhibit inter-columnar syncronization which reflects global stimulus properties,” Nature, Vol. 338, pp. 334–337, 1989.
S. Grossberg and E. Mingolla, “Neural dynamics of perceptual grouping: Textures, boundaries and emergent segmentations,” in Perception and Psychophysics, 1985.
Field, A. Heyes, and R.F. Hess, “Contour integration by the human visual system: Evidence for a local Association Field,” Vision Research, Vol. 33, pp. 173–193, 1993.
W.C. Hoffman, “The visual cortex is a contact bundle,” Applied Mathematics and Computation, Vol 32, pp. 137–167, 1989.
W.C. Hoffman and M. Ferraro, “Lie transformation groups, integral transforms, and invariant pattern recognition,” Spatial Vision, Vol. 8, pp. 33–44, 1994.
H. Hörmander, “Hypoelliptic second-order differential equations,” Acta Math., Vol. 119, pp. 147–171, 1967.
H. Hörmander and A. Melin, “Free systems of vector fields,” Ark. Mat, Vol. 16, pp. 83–88, 1978.
D. Hubel and T. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” Journal of Physiology, Vol. 160, pp. 106–154, 1962.
D. Jerison and A. Sánchez-Calle, “Subelliptic, second order differential operators,” Complex analysis III, Proc. Spec. Year, College Park/Md. 1985–86, Lect. Notes Math. 1277, pp. 46–77, 1987.
J.P. Jones and L.A. Palmer “An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex,” J. Neurophysiology, Vol. 58, pp. 1233–1258, 1987.
G. Kanizsa, Grammatica del vedere, Il Mulino, Bologna, 1980.
G. Kanizsa, Organization in Vision, Hardcover, 1979.
M.K. Kapadia, M. Ito, C.D. Gilbert, and G. Westheimer, “Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys,” Neuron, Vol. 15, pp. 843–856, 1995.
S. Kusuoka and D. Stroock, “Applications of the Malliavin calculus III,” J. Fac. Sci. Univ. Tokio, Sect. IA, Math, Vol. 34, pp. 391–442, 1987.
S. Kusuoka and D. Stroock, “Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator,” Ann. of Math., Vol. 127, pp. 165–189, 1988.
I. Kovacs and B. Julesz, “A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation,” PNAS, 90, pp. 7495–7497, 1993.
I. Kovacs and B. Julesz, “Perceptual sensitivity maps within globally defined visual shapes,” Nature, Vol. 370, pp. 644–646, 1994.
LeVeque and J. Randall, Nonlinear conservation laws and finite volume methods. (English) Steiner, Oskar et al., Computational methods for astrophysical fluid flow. Saas-Fee advanced course 27. Lecture notes 1997. Swiss Society for Astrophysics and Astronomy. Berlin: Springer, pp. 1–159, 1998.
S. Marcelja, “Mathematical description of the response of simple cortical cells,” J. Opt. Soc. Amer., Vol. 70, pp. 1297–1300, 1980.
V. Magnani, “Differentiability and area formula on stratified Lie groups,” Houston J. Math., Vol. 27, No. 2, pp. 297–323, 2001.
D. Mumford, M. Nitzberg, and T. Shiota, Filtering, Segmentation and Deph, Springer-Verlag: Berlin, 1993.
S. Masnou and J.M. Norel, “Level lines based disocclusion,” Proc. 5th. IEEE International Conference on Image Processing, Chicago, Illinois, October 4–7, 1998.
K.D. Miller, A. Kayser, and N.J. Priebe, “Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning,” J. Neurophysiol., Vol. 85, pp. 2130–2149, 2001.
E. Mingolla, “Le unità della visione,” IX Kanitza lecture, Trieste symposium on perception and cognition, 26 October 2001.
A. Nagel, E.M. Stein, and S. Wainger, “Balls and metrics defined by vector fields I: Basic properties,” Acta Math., Vol. 155, pp. 103–147, 1985.
S.B. Nelson, M. Sur, and D.C. Somers, “An emergent model of orientation selectivity in cat visual cortical simples cells,” J. Neurosci., Vol. 15, pp. 5448–5465, 1995.
S.D. Pauls, “A notion of rectifiability modeled on Carnot groups,” Indiana Univ. Math. J., Vol. 53, No. 1, pp. 49–81, 2004.
S.D. Pauls, “Minimal surfaces in the Heisenberg group,” Geom. Dedicata, Vol. 104, pp. 201–231, 2004.
P. Perona, “Deformable kernels for early vision,” IEEE-PAMI, Vol. 17, No. 5, pp. 488–499, 1995.
J. Petitot, “Phenomenology of Perception, Qualitative Physics and Sheaf Mereology,” Proceedings of the 16th International Wittgenstein Symposium, Vienna, Verlag Hölder-Pichler-Tempsky, 1994, pp. 387–408.
J. Petitot and Y. Tondut, “Vers une Neuro-geometrie. Fibrations corticales, structures de contact et contours subjectifs modaux, Mathématiques, Informatique et Sciences Humaines,” EHESS, Paris, Vol. 145, pp. 5–101, 1998.
J. Petitot, Morphological Eidetics for Phenomenology of Perception, in Naturalizing Phenomenology: Issues in Contemporary Phenomenology and Cognitive Science, J. Petitot, F.J. Varela, J.-M. Roy, B. Pachoud (Eds.), Stanford, Stanford University Press, 1998, pp. 330–371.
N.J. Priebe, K.D. Miller, T.W. Troyer, and A.E. Krukowsky, “Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity.” J. Neurosci., Vol. 18, pp. 5908–5927, 1998.
L. Rothschild and E.M. Stein, “Hypoelliptic differential operators and nihilpotent Lie groups,” Acta Math., Vol. 137, pp. 247–320, 1977.
A. Sarti, R. Malladi and J.A. Sethian, Subjective surfaces: A method for completion of missing boundaries, in Proceedings of the National Academy of Sciences of the United States of America, Vol. 12, No.97, pp. 6258–6263, 2000.
A. Sarti, G. Citti, and M. Manfredini, “From neural oscillations to variational problems in the visual cortex,” Journal of Physiology, Vol. 97, No. 2–3, pp. 87–385, 2003.
M. Shelley, D.J. Wielaard, D. McLaughlin and R. Shapley, “A neuronal network model of macaque primary visual cortex (v1): Orientation selectivity and dynamics in the input layer 4calpha”. Proc. Natl. Acad. Sci. U.S.A., Vol. 97, pp. 8087–8092, 2000.
S.C. Yen and L.H. Finkel, “Extraction of perceptually salient contours by striate cortical networks,” Vision Res., Vol. 38, No. 5, pp. 719–741, 1998.
Y.Q. Song and X.P. Yang, “BV function in the Heisenberg group,” Chinese Ann. Math. Ser. A, Vol. 24, No. 5, pp. 541–554, 2003; translation in Chinese J. Contemp. Math., Vol. 24, No. 4, pp. 301–316, 2004.
E.M. Stein, Harmonic Analysis, Princeton University Press, 1993.
S.K. Vodop’yanov and A.D. Ukhlov, “Approximately differentiable transformations and change of variables on nilpotent groups,” Sib. Math. J., Vol. 37, No.1, pp. 62–78, 1996, translation from Sib. Mat. Zh., Vol. 37, No. 1, pp. 70–89, 1996.
V.S. Varadarajan, “Lie groups, Lie algebras, and their representations,” Graduate Texts in Mathematics. 102, New York, Springer, 1984.
N.T. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups Cambridge texts in Mathematics, 100, Cambridge University Press, Cambredge, 1992.
F.W. Warner, Foundations of differentiable manifolds and Lie groups. Glenview, Illinois-London: Scott, Foresman & Comp. 270, 1971.
C. Wang, “The comparsion principle for viscosity solutions of fully nonlinear subelliptic equations in Carnot groups,” Preprint.
F. Worgotter and C. Koch, “A detailed model of the primary visual pathway in the cat: Comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity,” J. Neurosci., Vol. 11, pp. 1959–1979, 1991.
Author information
Authors and Affiliations
Corresponding author
Additional information
The work was supported by University of Bologna: founds for selected research topics.
Giovanna Citti is full professor of Mathematical Analysis at University of Bologna, and she is coordinator, together with A.Sarti, of the local interdipartimental group of “Neuromathematics and Visual Cognition”. Her principal research interests are existence and regularity of solution of nonlinear subelliptic equations represented as sum of squares of vector fields, whose associated geometry is subriemannian. Besides she is interested in applications of instruments of real analysis in Lie Groups and subriemannian geometry to visual perception, and to the study of the functionality of the visual cortex.
Alessandro Sarti received the Ph.D. degree in bioengineering from the University of Bologna in 1996. From 1997 to 2000 he was appointed with a Postdoc position at the Mathematics Department of the University of California, Berkeley, and the Mathematics Department of the Lawrence Berkeley National Laboratory in Berkeley. Since 2001 he got a permanent position at the University of Bologna. He is associate to CREA, Ecole Polytechnique, Paris, France. With Giovanna Citti, he is the scientific responsible of the interdipartimental group of “Neuromathematics and Visual Cognition.” In the last years he gave lectures at the University of Yale, University of California at Los Angeles, University of California at Berkeley, Freie Universitat Berlin, Ecole Normale Superieure Cachan, Ecole Polytechnique, Scuola Normale Superiore di Pisa.
Rights and permissions
About this article
Cite this article
Citti, G., Sarti, A. A Cortical Based Model of Perceptual Completion in the Roto-Translation Space. J Math Imaging Vis 24, 307–326 (2006). https://doi.org/10.1007/s10851-005-3630-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-005-3630-2