Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Improving Control Performance of Unmanned Aerial Vehicles through Shared Experience

  • Regular Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

A Correction to this article was published on 22 January 2022

This article has been updated

Abstract

This work proposes a novel approach for improving the control performance of Unmanned Aerial Vehicles (UAVs) through cooperative reinforcement learning. By sharing their experience, it is shown that multiple UAVs can work together to converge on a set of optimal Model Predictive Control (MPC) parameters faster than when working on their own. In order to benefit from this shared experience, the UAVs must coordinate their learning strategies. Here, we proposed a Leader-Follower approach, whereby the Leader ensures all trials are drawn from the same distribution and contribute to a common payoff game of Learning Automata. Experimental results show that this approach results in faster learning without any loss of performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Change history

References

  1. Abdolhosseini, M., Zhang, Y., Rabbath, C.: Trajectory tracking with model predictive control for an unmanned quad-rotor helicopter: Theory and flight test results. In: Proceedings of the 5th International Conference on Intelligent Robotics and Applications - Volume Part I, pp 411–420. Springer, Berlin (2012)

  2. Atia, M., Donnelly, C., Noureldin, A., Korenberg, M.: A novel systems integration approach for multi-sensor integrated navigation systems. In: 2014 IEEE International Systems Conference Proceedings, pp. 554–558. https://doi.org/10.1109/SysCon.2014.6819310 (2014)

  3. Ayyad, A., Chehadeh, M., Awad, M.I., Zweiri, Y.: Real-time system identification using deep learning for linear processes with application to unmanned aerial vehicles. IEEE Access 8, 122539–122553 (2020)

    Article  Google Scholar 

  4. Bemporad, A.: A quadratic programming algorithm based on nonnegative least squares with applications to embedded model predictive control. IEEE Trans. Autom. Control 61(4), 1111–1116 (2016). https://doi.org/10.1109/TAC.2015.2459211

    Article  MathSciNet  MATH  Google Scholar 

  5. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Trans. Robot. 21(3), 376–386 (2005)

    Article  Google Scholar 

  6. Cao, G., Lai, E.M.K., Alam, F.: Gaussian process model predictive control of an unmanned quadrotor. J. Intell. Robot. Syst. 88(1), 147–162 (2017). https://doi.org/10.1007/s10846-017-0549-y

    Article  Google Scholar 

  7. D’Amato, E., Mattei, M., Notaro, I.: Distributed reactive model predictive control for collision avoidance of unmanned aerial vehicles in civil airspace. Journal of Intelligent & Robotic Systems. https://doi.org/10.1007/s10846-019-01047-5 (2019)

  8. Dentler, J., Rosalie, M., Danoy, G., Bouvry, P., Kannan, S., Olivares-Mendez, M.A., Voos, H.: Collision avoidance effects on the mobility of a uav swarm using chaotic ant colony with model predictive control. J. Intell. Robot. Syst. 93(1), 227–243 (2019). https://doi.org/10.1007/s10846-018-0822-8

    Article  Google Scholar 

  9. Devia, C.A., Rojas, J.P., Petro, E., Martinez, C., Mondragon, I.F., Patino, D., Rebolledo, M.C., Colorado, J.: High-throughput biomass estimation in rice crops using uav multispectral imagery. J. Intell. Robot. Syst. 96(3), 573–589 (2019). https://doi.org/10.1007/s10846-019-01001-5

    Article  Google Scholar 

  10. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: A taxonomy for multi-agent robotics. Auton. Robot. 3, 375–397 (1996)

    Article  Google Scholar 

  11. Emami, S.A., Banazadeh, A.: Online identification of aircraft dynamics in the presence of actuator faults. J. Intell. Robot. Syst. 96(3), 541–553 (2019). https://doi.org/10.1007/s10846-019-00998-z

    Article  Google Scholar 

  12. Hafez, A., Iskandarani, M., Givigi, S., Yousefi, S., Rabbath, C.A., Beaulieu, A.: Using linear model predictive control via feedback linearization for dynamic encirclement. In: Proc. of the American Control Conf., pp. 3868–3873. https://doi.org/10.1109/ACC.2014.6858619 (2014)

  13. Jardine, P.T., Kogan, M., Givigi, S.N., Yousefi, S.: Adaptive predictive control of a differential drive robot tuned with reinforcement learning. Int. J. Adapt. Control Signal Process. 33(2), 410–423 (2019). https://doi.org/10.1002/acs.2882

    Article  MathSciNet  MATH  Google Scholar 

  14. Kamesh, R., Rani, K.Y.: Novel formulation of adaptive MPC as EKF using ANN model: Multiproduct semibatch polymerization reactor case study. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 3061–3073 (2017). https://doi.org/10.1109/TNNLS.2016.2614878

    Article  MathSciNet  Google Scholar 

  15. Lecointe, M., Chanel, C.P.C., Defay, F.: Backstepping control law application to path tracking with an indoor quadrotor. In: Proceedings of European Aerospace Guidance Navigation and Control Conference (EuroGNC), Toulouse, FR, pp. 1–19. http://oatao.univ-toulouse.fr/14669/ (2015)

  16. Lian, C., Xu, X., Chen, H., He, H.: Near-optimal tracking control of mobile robots via receding-horizon dual heuristic programming. IEEE Trans. Cybern. 46(11), 2484–2496 (2016). https://doi.org/10.1109/TCYB.2015.2478857

    Article  Google Scholar 

  17. Ljung, L., Hjalmarsson, H., Ohlsson, H.: Four encounters with system identification. European Journal of Control 17(5), 449–471 (2011). https://doi.org/10.3166/ejc.17.449-471, http://www.sciencedirect.com/science/article/pii/S0947358011709712

    Article  MathSciNet  Google Scholar 

  18. Mayne, D., Rawlings, J., Rao, C., Scokaert, P.: Constrained model predictive control: Stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  Google Scholar 

  19. Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: Pixhawk: a micro aerial vehicle design for autonomous flight using onboard computer vision. Auton Robots 33(1-2), 21–39 (2012). https://doi.org/10.1007/s10514-012-9281-4

    Article  Google Scholar 

  20. Mouhacine, B.: Model-based vs data-driven adaptive control: an overview. Int. J. Adapt. Control Signal Process. 32(5), 753–776 (2017). https://doi.org/10.1002/acs.2862

    Article  MathSciNet  MATH  Google Scholar 

  21. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Prentice-Hall, Inc., Upper Saddle River (1989)

    Google Scholar 

  22. Nowé, A, Verbeeck, K., Peeters, M.: Learning automata as a basis for multi agent reinforcement learning. In: Tuyls, K., Hoen, P.J., Verbeeck, K., Sen, S (eds.) Learning and Adaption in Multi-Agent Systems, pp 71–85. Springer, Berlin (2006)

  23. Petrović VM: Artificial intelligence and virtual worlds – toward human-level ai agents. IEEE Access 6, 39976–39988 (2018)

    Article  Google Scholar 

  24. Raslan, H., Schwartz, H., Givigi, S.: A learning invader for the “guarding a territory” game. J. Intell. Robot. Syst. 83(1), 55–70 (2016). https://doi.org/10.1007/s10846-015-0317-9

    Article  Google Scholar 

  25. Rossiter, J.A.: Model-Based Predictive Control: A Practical Approach, 1st edn. CRC Press LLC, Boca Raton (2004)

    Google Scholar 

  26. Samal, M.K., Garratt, M., Pota, H., Sangani, H.T.: Model predictive flight controller for longitudinal and lateral cyclic control of an unmanned helicopter. In: 2012 2nd Australian Control Conference, pp. 386–391 (2012)

  27. dos Santos, S.R.B., Givigi, S.N., Nascimento, C.L.: Autonomous construction of multiple structures using learning automata: Description and experimental validation. IEEE Syst. J. 9(4), 1376–1387 (2015). https://doi.org/10.1109/JSYST.2014.2374334

    Article  Google Scholar 

  28. Sidney N Givigi, J., Schwartz, H.M.: Decentralized strategy selection with learning automata for multiple pursuer–evader games. Adapt. Behav. 22(4), 221–234 (2014). https://doi.org/10.1177/1059712314526261

    Article  Google Scholar 

  29. Thathachar, M.A.L., Arvind, M.T.: Parallel algorithms for modules of learning automata. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 28(1), 24–33 (1998). https://doi.org/10.1109/3477.658575

    Article  Google Scholar 

  30. Thathachar, M.A.L., Sastry, P.S.: Networks of Learning Automata: Techniques for Online Stochastic Optimization. Springer, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney Givigi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article ref. 23 was incorrect and should have been “Petrović VM: Artificial intelligence and virtual worlds – toward human-level ai agents. IEEE Access 6, 39976–39988 (2018)”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jardine, P.T., Givigi, S. Improving Control Performance of Unmanned Aerial Vehicles through Shared Experience. J Intell Robot Syst 102, 68 (2021). https://doi.org/10.1007/s10846-021-01387-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01387-1

Keywords

Navigation