Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Super Twisting Algorithm for Robust Geometric Control of a Helicopter

  • Regular Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper (A preliminary version of the submitted paper appeared in the Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS’20), Athens, Greece*), a robust attitude controller is proposed for a small-scale helicopter based on Multi-Variable Super Twisting Algorithm. An interconnected hybrid model of a helicopter is considered consisting of fuselage and rotor which are modeled as a single rigid body and a disc, respectively. For designing a globally defined controller, we consider that attitude dynamics evolves on non-Euclidean space. We assume that the rotor is subjected to unknown disturbances and exact information of the helicopter parameters are unavailable due to parametric uncertainty. A attitude tracking controller using Super Twisting Algorithm based on Second-Order sliding mode technique is proposed to ensure robustness in the presence of both unknown disturbance and parameter variation. A family of strong Lyapunov functions is used to show that the proposed controller drives the closed loop system to the sliding manifold in finite time. For the suitable choice of gain matrices, the reduced order error dynamics becomes almost globally asymptotically stable. We further show that the reduced order error dynamics is almost semi-globally exponentially stable if its trajectories starts from a specific subset. The rate of convergence can be adjusted as required by tuning the controller gains. Numerical simulations are carried out by comparing the proposed controller with the state-of-the art controllers available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahmed, B., Pota, H.R.: Flight control of a rotary wing uav using adaptive backstepping. In: International Conference on Control and Automation, pp. 1780–1785. IEEE (2009)

  2. Ahmed, B., Pota, H. R., Garratt, M.: Flight control of a rotary wing uav using backstepping. Int. J. Robust Nonlinear Control: IFAC-Affiliated J. 20(6), 639–658 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beard, R.W., McLain, T.W.: Small Unmanned Aircraft: Theory and Practice. Princeton University Press (2012)

  4. Bhat, S.P., Bernstein, D.S.: A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Syst. Control Lett. 39(1), 63–70 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boiko, I., Fridman, L.: Analysis of chattering in continuous sliding-mode controllers. IEEE Trans. Autom. Control 50(9), 1442–1446 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Springer, Berlin (2004)

    MATH  Google Scholar 

  7. Bullo, F., Murray, R.M.: Tracking for fully actuated mechanical systems: a geometric framework. Automatica 35, 17–34 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chaturvedi, N., Sanyal, A., McClamroch, N.: Rigid-body attitude control. IEEE Control Syst. Mag. 31(3), 30–51 (2011). https://doi.org/10.1109/MCS.2011.940459

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, R.T.: Effects of primary rotor parameters on flapping dynamics (1980)

  10. Chen, Y., Feng, W., Zheng, G.: Optimum placement of uav as relays. IEEE Commun. Lett. 22(2), 248–251 (2017)

    Article  Google Scholar 

  11. Cortes, G.C.G., Castaños, F., Davila, J.: Sliding motions on so(3) sliding subgroups (2019)

  12. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. CRC Press (1998)

  13. Erdos, D., Erdos, A., Watkins, S.E.: An experimental uav system for search and rescue challenge. IEEE Aerosp. Electron. Syst. Mag. 28(5), 32–37 (2013)

    Article  Google Scholar 

  14. Filippov, A.: Differential Equations with Discontinuous Righthand Sides. Springer, Berlin (1988)

    Book  Google Scholar 

  15. Frazzoli, E., Dehleh, M., Feron, E.: Trajectory tracking control design for autonomous helicopters using a backstepping algorithm. In: Proceedings of the American Control Conference, vol. 6, pp. 4102–4107 (2000)

  16. Fridman, L., Levant, A.: Higher order sliding modes as a natural phenomenon in control theory. In: Robust Control via Variable Structure and Lyapunov Techniques, pp. 107–133. Springer (1996)

  17. Fridman, L., Levant, A., et al.: Higher order sliding modes. In: Sliding Mode Control in Engineering, vol. 11, pp. 53–102 (2002)

  18. Hall, W. Jr., Bryson, A. Jr.: Inclusion of rotor dynamics in controller design for helicopters. J. Aircr. 10(4), 200–206 (1973)

    Article  Google Scholar 

  19. Ingle, S.J., Celi, R.: Effects of higher order dynamics on helicopter flight control law design. J. Am. Helicopter Soc. 39(3), 12–23 (1994)

    Article  Google Scholar 

  20. Ioannou, P.A., Sun, J.: Robust Adaptive Control. Courier Corporation (2012)

  21. Khalil, H.K.: Nonlinear systems, vol. 3

  22. Kingston, D., Beard, R.W., Holt, R.S.: Decentralized perimeter surveillance using a team of uavs. IEEE Trans. Robot. 24(6), 1394–1404 (2008)

    Article  Google Scholar 

  23. Koditschek, D.E.: The application of total energy as a lyapunov function for mechanical control systems. Contemp. Math. 97, 131 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krishna, A.B., Sen, A., Kothari, M.: Robust geometric control of a helicopter using sliding mode control. In: 2020 International Conference on Unmanned Aircraft Systems (ICUAS’20). ICUAS (Accepted) (2020)

  25. Kulumani, S., Lee, T.: Constrained geometric attitude control on so (3). Int. J. Control Autom. Syst. 15(6), 2796–2809 (2017)

    Article  Google Scholar 

  26. Lee, T.: Exponential stability of an attitude tracking control system on so (3) for large-angle rotational maneuvers. Syst. Control Lett. 61(1), 231–237 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lee, T.: Robust adaptive attitude tracking on so(3) with an application to a quadrotor uav. IEEE Trans. Control Syst. Technol. 21(5), 1924–1930 (2012)

    Google Scholar 

  28. Lee, T.: Global exponential attitude tracking controls on so(3). IEEE Trans. Autom. Control 60(10), 2837–2842 (2015). https://doi.org/10.1109/TAC.2015.2407452

    Article  MathSciNet  MATH  Google Scholar 

  29. Lee, T., Leok, M., McClamroch, N.H.: Control of complex maneuvers for a quadrotor uav using geometric methods on se (3). arXiv:1003.2005 (2010)

  30. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Levant, A.: Higher order sliding modes and arbitrary-order exact robust differentiation. In: 2001 European Control Conference (ECC), pp. 996–1001. IEEE (2001)

  33. Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica 41(5), 823–830 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Levant, A., Pridor, A., Gitizadeh, R., Yaesh, I., Ben-Asher, J.: Aircraft pitch control via second-order sliding technique. J. Guid. Control Dyn. 23(4), 586–594 (2000)

    Article  Google Scholar 

  35. Maithripala, D.S., Berg, J.M., Dayawansa, W.P.: Almost-global tracking of simple mechanical systems on a general class of lie groups. IEEE Trans. Autom. Control 51(2), 216–225 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Marconi, L., Naldi, R.: Robust full degree-of-freedom tracking control of a helicopter. Automatica 43(11), 1909–1920 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mettler, B.: Identification Modeling and Characteristics of Miniature Rotorcraft. Springer Science & Business Media (2013)

  38. Moreno, J.A.: A linear framework for the robust stability analysis of a generalized super-twisting algorithm. In: 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6. IEEE (2009)

  39. Moreno, J.A., Osorio, M.: A lyapunov approach to second-order sliding mode controllers and observers. In: 2008 47th IEEE Conference on Decision and Control, pp. 2856–2861. IEEE (2008)

  40. Moreno, J.A., Osorio, M.: Strict lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control 57(4), 1035–1040 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nagesh, I., Edwards, C.: An fdi scheme for a satellite based on a multivariable super-twisting sliding mode approach. IFAC Proc. 45(20), 528–533 (2012). https://doi.org/10.3182/20120829-3-MX-2028.00262. http://www.sciencedirect.com/science/article/pii/S147466701634808X. 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes

    Article  Google Scholar 

  42. Nagesh, I., Edwards, C.: A multivariable super-twisting sliding mode approach. Automatica 50(3), 984–988 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Panza, S., Lovera, M.: Rotor state feedback in helicopter flight control: robustness and fault tolerance. In: IEEE Conference on Control Applications (CCA), pp. 451–456. IEEE (2014)

  44. Raj, N., Banavar, R., Abhishek, A., Kothari, M.: Attitude tracking control for aerobatic helicopters: a geometric approach. In: 56th Annual Conference on Decision and Control, pp. 1951–1956. IEEE (2017)

  45. Raj, N., Banavar, R.N., Kothari, M., et al.: Robust attitude tracking for aerobatic helicopters: a geometric approach. IEEE Trans. Control Syst. Technol. 29(1), 150–164 (2020)

    Article  Google Scholar 

  46. Raptis, I.A., Valavanis, K.P., Moreno, W.A.: A novel nonlinear backstepping controller design for helicopters using the rotation matrix. IEEE Trans. Control Syst. Technol. 19(2), 465–473 (2010)

    Article  Google Scholar 

  47. Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: Guidance and control of missile interceptor using second-order sliding modes. IEEE Trans. Aerosp. Electron. Syst. 45(1), 110–124 (2009)

    Article  Google Scholar 

  48. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Springer, Berlin (2014)

    Book  Google Scholar 

  49. Tan, X., Berkane, S., Dimarogonas, D.V.: Constrained attitude maneuvers on so (3): rotation space sampling, planning and low-level control. Automatica 112, 108659 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tang, S., Yang, Q., Qian, S., Zheng, Z.: Attitude control of a small-scale helicopter based on backstepping. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 229(3), 502–516 (2015)

    Article  Google Scholar 

  51. Tian, B., Yin, L., Wang, H.: Finite-time reentry attitude control based on adaptive multivariable disturbance compensation. IEEE Trans. Ind. Electron. 62(9), 5889–5898 (2015)

    Article  Google Scholar 

  52. Vidal, P.V., Nunes, E.V., Hsu, L.: Multivariable super-twisting algorithm for a class of systems with uncertain input matrix. In: 2016 American Control Conference (ACC), pp. 7201–7206. IEEE (2016)

  53. Zhang, J., Biggs, J.D., Ye, D., Sun, Z.: Finite-time attitude set-point tracking for thrust-vectoring spacecraft rendezvous. Aerosp. Sci. Technol. 96, 105588 (2020)

    Article  Google Scholar 

  54. Zhu, B., Huo, W.: Robust nonlinear control for a model-scaled helicopter with parameter uncertainties. Nonlinear Dyn. 73(1–2), 1139–1154 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work has no funding to report.

Author information

Authors and Affiliations

Authors

Contributions

Akhil B Krishna provided the research ideas and theoretical analysis, wrote the code and the paper. Arijit Sen and Mangal Kothari worked to improve the mathematical analysis, results, and manuscript of the paper. All authors have read and agreed to publish this version of the manuscript.

Corresponding author

Correspondence to Akhil B. Krishna.

Ethics declarations

Conflict of interest

The authors declared no potential conflict of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, A.B., Sen, A. & Kothari, M. Super Twisting Algorithm for Robust Geometric Control of a Helicopter. J Intell Robot Syst 102, 61 (2021). https://doi.org/10.1007/s10846-021-01366-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01366-6

Keywords

Navigation