Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Vector Field Guided RRT* Based on Motion Primitives for Quadrotor Kinodynamic Planning

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The intelligent drone is the key device of the future Internet of Drone, and its safe and robust flight in complicated environments still faces challenges. In this paper, we present a sampling-based kinodynamic planning algorithm for quadrotors, which plans a dynamically feasible trajectory in a complicated environment. We have designed a method to constrain the sampling state by using the vector field to construct a cone in the sampling stage of RRT*, so that the generated trajectory is connected as smoothly as possible to other states in the reachable set. The motion primitives are then generated by solving an optimal control problem and an explicit solution of the optimal duration for the motion primitives is given to optimally connect any pair of states. In addition, we have tried a new method to determine the neighbor radius for the non-Euclidean metrics of this paper. Finally, the planned trajectory is applied to the simulated quadrotor, which verifies the dynamic feasibility of the trajectory. Simulation results show that compared with the existing kinodynamic RRT* under the same number of iterations, the proposed algorithm explores more states with a shorter execution time and generates a smoother trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gharibi, M., Boutaba, R., Waslander, S.L.: Internet of drones. IEEE Access 4, 1148–1162 (2016)

    Article  Google Scholar 

  2. Genc, H., Zu, Y., Chin, T.W.: Flying IoT: Toward low-power vision in the sky. IEEE Micro 37(6), 40–51 (2017)

    Article  Google Scholar 

  3. Koubaa, A., Qureshi, B.: Dronetrack: Cloud-based real-time object tracking using unmanned aerial vehicles. IEEE Access 6, 13810–13824 (2018)

    Article  Google Scholar 

  4. Gasparetto, A., Boscariol, P., Lanzutti, A., Vidoni, R.: Path Planning and Trajectory Planning Algorithms: a General Overview. In: Carbone, G., Gomez-Bravo, F. (eds.) Motion and Operation Planning of Robotic Systems. Mechanisms and Machine Science, vol. 29. Springer, Cham (2015)

  5. Li, F., Zlatanova, S., Koopman, M., Bai, X., Diakitéc, A.: Universal path planning for an indoor drone. Autom. Constr. 95, 275–283 (2018)

    Article  Google Scholar 

  6. Cowling, I.D., Yakimenko, O.A., Whidborne, J.F., Cooke, A.K.: A prototype of an autonomous controller for a quadrotor UAV. European Control Conference (ECC). Kos, pp. 4001–4008 (2007)

  7. Bouktir, Y., Haddad, M., Chettibi, T.: Trajectory planning for a quadrotor helicopter. In 16th Mediterranean Conference on Control and Automation. Ajaccio, pp. 1258–1263 (2008)

  8. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. Proc. Int. Conf. Robot. Autom. pp. 2520–2525 (2011)

  9. Trélat, E.: Optimal control and applications to aerospace: Some results and challenges. J. Optim. Theory Appl. 154(3), 713–758 (2012)

    Article  MathSciNet  Google Scholar 

  10. Loock, W.V., Pipeleers, G., Swevers, J.: Time-optimal quadrotor flight. Proc. Eur. Control Conf. pp. 1788–1792 (2013)

  11. LaValle, S.: Planning Algorithms. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  12. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  Google Scholar 

  13. Webb, D.J., Berg, J.V.D.: Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics. IEEE International Conference on Robotics and Automation. Karlsruhe, pp. 5054–5061 (2013)

  14. Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. Robotics Research. Springer, pp. 649–666 (2016)

  15. Oleynikova, H., Burri, M., Taylor, Z., Nieto, J., Siegwart, R., Galceran, E.: Continuous-time trajectory optimization for online UAV replanning. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5332–5339 (2016)

  16. Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Informed rrt*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2997–3004 (2014)

  17. Mueller, M.W., Hehn, M., D’Andrea, R.: A computationally efficient algorithm for state-to-state quadrocopter trajectory generation and feasibility verification. IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, pp. 3480–3486 (2013)

  18. Liu, S., Atanasov, N., Mohta, K., Kumar, V.: Search-based motion planning for quadrotors using linear quadratic minimum time control. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, pp. 2872–2879 (2017)

  19. Paranjape, A.A., Meier, K.C., Shi, X., Chung, S.J., Hutchinson, S.: Motion primitives and 3d path planning for fast flight through a forest. Int. J. Robot. Re. 34(3), 357–377 (2015)

    Article  Google Scholar 

  20. Liu, S., Mohta, K., Atanasov, N., Kumar, V.: Search-based motion planning for aggressive flight in SE(3). IEEE Robot. Autom. Lett. 3(3), 2439–2446 (2018)

    Article  Google Scholar 

  21. Ko, I., Kim, B., Park, F. C.: Randomized path planning on vector fields. Int. J. Robot. Res. 33(13), 1664–1682 (2014)

    Article  Google Scholar 

  22. Pereira, G.A.S., Choudhury, S., Scherer, S.: Kinodynamic motion planning on vector fields using RRT*. Carnegie Mellon University. Pittsburgh. CMU-RI-TR-16-35 (2016)

  23. Otte, M., Silva, W., Frew, E.: Any-time path-planning: Time-varying wind field + moving obstacles. Int. Conf. on Robotics and Automation(ICRA), pp. 2575–2582 (2016)

  24. Lolla, T., Lermusiaux, P.F.J., Ueckermann, M.P.: Time-optimal path planning in dynamic flows using level set equations: theory and schemes. Ocean Dyn. 64(10), 1373–1397 (2014)

    Article  Google Scholar 

  25. Palmieri, L., Kucner, T.P., Magnusson, M., Lilienthal, A.J., Arras, K.O.: Kinodynamic motion planning on Gaussian mixture fields. IEEE International Conference on Robotics and Automation (ICRA). Singapore, pp. 6176–6181 (2017)

  26. Mason, M.T.: The mechanics of manipulation. proceedings. IEEE International Journal of Robotics & Automation, pp. 544–548 (1985)

  27. Peterfreund, N., Baram, Y.: Convergence analysis of nonlinear dynamical systems by nested Lyapunov functions. IEEE Trans. Autom. Control 43(8), 1179–1184 (1998)

    Article  MathSciNet  Google Scholar 

  28. Majumdar, A., Tedrake, R.: Funnel libraries for real-time robust feedback motion planning. Int. J. Robot. Res. 36(8), 947–982 (2017)

    Article  Google Scholar 

  29. Pendleton, S.D., Liu, W., Andersen, H., Eng, Y.H., Frazzoli, E.: Numerical approach to reachability-guided sampling-based motion planning under differential constraints. IEEE Robot. Autom. Lett. 2(3), 1232–1239 (2017)

    Article  Google Scholar 

  30. Lee, T., Leoky, M., McClamroch, N.H.: Geometric tracking control of a quadrotor UAV on SE (3). Proc. 49th IEEE Conf. Decision Control, pp. 5420–5425 (2010)

  31. Canny, J.F.: The complexity of robot motion planning. MIT Press. Cambridge (1988)

  32. Choset, H., Kantor, G.A., Thrun, S.: Principles of robot motion: theory, Algorithms, and Implementations. MIT Press. Cambridge (2005)

  33. Hehn, M., D’Andrea, R.: Real-time trajectory generation for quadrocopters. IEEE Trans Robot. 31(4), 877–892 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the National Natural Science Foundation of China under Grant 61461013, in part of the Natural Science Foundation of Guangxi Province under Grant 2018GXNSFAA281179, and in part of the Dean Project of Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing under Grant GXKL06160103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bowei Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Chen, B., Lan, R. et al. Vector Field Guided RRT* Based on Motion Primitives for Quadrotor Kinodynamic Planning. J Intell Robot Syst 100, 1325–1339 (2020). https://doi.org/10.1007/s10846-020-01231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01231-y

Keywords

Navigation