Abstract
The odometry is an important part of intelligent mobile robots to achieve positioning and navigation functions. At present, the mainstream visual odometry locates only through the visual information obtained by camera sensors. Therefore, in the case of insufficient light, texture missing and camera jitter, the visual odometry is difficult to locate accurately. To solve the problem, we propose a binocular MSCKF-based visual inertial odometry system using Lucas-Kanade (LK) optical flow. Firstly, the Inertial Measurement Unit (IMU) is introduced to overcome the above problems. Moreover, LK optical flow algorithm is utilized to process the visual information obtained by the binocular camera, and MSCKF algorithm is employed to realize the fusion of visual information and inertial information, which improves the accuracy and efficiency of the visual inertial odometry system positioning. Finally, the proposed method is simulated on the European Robotics Challenge (EuRoc) dataset by Robot Operating System (ROS), and compared with two other advanced visual inertial odometry systems, ROVIO and MSCKF-mono. A large number of simulations verify that the proposed method can achieve accurate pose estimation, which is superior to the two existing advanced visual inertial odometry systems.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Suzuki, T., Kubo, N.: Precise point positioning for mobile robots using software GNSS receiver and QZSS LEX signal. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 369–375. IEEE (2013)
Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry for ground vehicle applications. J. Field Robot. 23(1), 3–20 (2006)
Mhiri, R., Ouerghi, S., Boutteau, R., Vasseur, P., Mousset, S., Bensrhair, A.: Asynchronous structure from motion at scale. J. Intell. Robot. Syst. 96(2), 159–177 (2019)
Nong, X., Cheng, L., Dai, Y., Rui, P., Chen, Y., Wu, H.: Research on indoor navigation of mobile robot based on INS and ultrosound. In: 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 231–235. IEEE (2017)
Xu, H., Yu, L., Hou, J., Fei, S.: Automatic reconstruction method for large scene based on multi-site point cloud stitching. Measurement. 131, 590–596 (2019)
Cheng, L., Dai, Y., Peng, R., Nong, X.: Positioning and navigation of mobile robot with asynchronous fusion of binocular vision system and inertial navigation system. Int. J. Adv. Robot. Syst. 14(6), 1729881417745607 (2017)
Li, C., Yu, L., Fei, S.: Real-time 3D motion tracking and reconstruction system using camera and IMU sensors. IEEE Sensors J. 19(15), 6460–6466 (2019)
Asadi, E., Bottasso, C.L.: Tightly-coupled stereo vision-aided inertial navigation using feature-based motion sensors. Adv. Robot. 28(11), 717–729 (2014)
Kaiser, J., Martinelli, A., Fontana, F., Scaramuzza, D.: Simultaneous state initialization and gyroscope bias calibration in visual inertial aided navigation. IEEE Robot. Autom. Lett. 2(1), 18–25 (2016)
Li, C., Yu, L., Fei, S.: Large-scale, real-time 3D scene reconstruction using visual and IMU sensors. IEEE Sensors J. 20, 5597–5605 (2020). https://doi.org/10.1109/JSEN.2020.2971521
Weiss, S., Siegwart, R.: Real-time metric state estimation for modular vision-inertial systems. In: 2011 IEEE International Conference on Robotics and Automation, pp. 4531–4537. IEEE (2011)
Lynen, S., Achtelik, M.W., Weiss, S., Chli, M., Siegwart, R.: A robust and modular Multi-Sensor Fusion approach applied to MAV navigation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3923–3929. IEEE (2013)
Zhu, A.Z., Atanasov, N., Daniilidis, K.: Event-based visual inertial odometry. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5816–5824. IEEE (2017)
Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based visual-inertial Odometry using nonlinear optimization. Int. J. Robot. Res. 34(3), 314–334 (2014)
Qin, T., Li, P., Shen, S.: VINS-mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 34(4), 1–17 (2018)
Mourikis, A.I., Roumeliotis, S.I.: A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3565–3572. IEEE (2007)
Li, M., Mourikis, A.I.: Improving the accuracy of EKF-based visual-inertial odometry. In: 2012 IEEE International Conference on Robotics and Automation, pp. 828–835. IEEE (2012)
Yu, L., Li, C., Fei, S.: Any-wall touch control system with switching filter based on 3D sensor. IEEE Sensors J. 18(11), 4697–4703 (2018)
Sun, K., Mohta, K., Pfrommer, B., Watterson, M., Liu, S., Mulgaonkar, Y., Kumar, V.: Robust stereo visual inertial Odometry for fast autonomous flight. IEEE Robot. Autom. Lett. 3(2), 965–972 (2018)
Yating, D., Lei, C., Rui, P., Xiaoqi, N., Wenxia, X., Yang, C., Qiuxuan, W.: Asynchronous fusion in positioning of mobile robot based on vision-aided inertial navigation. In: 2017 36th Chinese Control Conference (CCC), pp. 6685–6690. IEEE (2017)
Xu, H., Hou, J., Yu, L., Fei, S.: 3D reconstruction system for collaborative scanning based on multiple RGB-D cameras. Pattern Recogn. Lett. 128, 505–512 (2019)
De Croce, M., Pire, T., Bergero, F.: DS-PTAM: distributed stereo parallel tracking and mapping SLAM system. J. Intell. Robot. Syst. 95(2), 365–377 (2019)
Huang, G.P., Mourikis, A.I., Roumeliotis, S.I.: Observability-based rules for designing consistent EKF SLAM estimators. Int. J. Robot. Res. 29(5), 502–528 (2010)
Huang, G.P., Trawny, N., Mourikis, A.I., Roumeliotis, S.I.: Observability-based consistent EKF estimators for multi-robot cooperative localization. Auton. Robot. 30(1), 99–122 (2011)
Huang, J., Ma, X., Che, H., Han, Z.: Further result on interval observer Design for Discrete-time Switched Systems and Application to circuit systems. IEEE Trans. Circuits Syst. II-Express Briefs. 1 (2019). https://doi.org/10.1109/TCSII.2019.2957945
Castellanos, J.A., Martinez-Cantin, R., Tardós, J.D., Neira, J.: Robocentric map joining: improving the consistency of EKF-SLAM. Robot. Auton. Syst. 55(1), 21–29 (2007)
Yu, L., Huang, J., Fei, S.: Robust switching control of the direct-drive servo control systems based on disturbance observer for switching gain reduction. IEEE Trans. Circuits Syst. Express Briefs. 66(8), 1366–1370 (2019)
Karami, E., Prasad, S., Shehata, M.: Image matching using SIFT, SURF, BRIEF and ORB: performance comparison for distorted images. arXiv:1710.02726 (2017)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: An efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2012)
Lowe, D.G.: Distinctive image features from scale-invariant Keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Und. 110(3), 346–359 (2008)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI), pp. 674–679 (1981)
Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp. 2432–2439. IEEE (2010)
Xu, H., Yu, L., Fei, S.: Hand-held 3D reconstruction of large-scale scene with Kinect sensors based on surfel and video sequences. IEEE Geosci. Remote Sens. L. 15(12), 1842–1846 (2018)
Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modeling and computation: a survey. Comput. Vis. Image Und. 134, 1–21 (2015)
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: European conference on computer vision, pp. 430–443, Springer (2006)
Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2008)
Saha, O., Dasgupta, P.: Experience learning from basic patterns for efficient robot navigation in indoor environments. J. Intell. Robot. Syst. 92(3–4), 545–564 (2018)
Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Siegwart, R.: The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 35(10), 1157–1163 (2016)
Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry using a direct EKF-based approach. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 298–304. IEEE (2015)
Delmerico, J., Scaramuzza, D.: A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2502–2509. IEEE (2018)
Oskiper, T., Zhu, Z., Samarasekera, S., Kumar, R.: Visual odometry system using multiple stereo cameras and inertial measurement unit. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
Acknowledgements
The work is supported by the National Natural Science Foundation of China (No.61873176). Natural Science Foundation of Jiangsu Province, China (BK20181433); The open fund for the Jiangsu Smart Factory Engineering Research Center; Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX19_1927).The authors would like to thank the referees for their constructive comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, G., Yu, L. & Fei, S. A Binocular MSCKF-Based Visual Inertial Odometry System Using LK Optical Flow. J Intell Robot Syst 100, 1179–1194 (2020). https://doi.org/10.1007/s10846-020-01222-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-020-01222-z