Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Development of a New Hydraulic Ankle for HYDROïD Humanoid Robot

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

For humanoid robots, design of the ankle mechanism is still open research problem since high torque is required while compact structures have to be maintained. This paper investigates an enhanced design of 3 degree-of-freedom hydraulic hybrid ankle mechanism. The design is based on (US9327785) Alfayad et al. (2011). Using a hybrid kinematic structure with hydraulic actuation, allows us to reach a slender humanoid ankle shape while enabling the high torque performances required for stable walking. Performances analysis of the first version ankle mechanism designed for HYDROïD humanoid robot showed some limits mainly induced by seal friction and pistons misalignment. In this paper, the influence of the friction parameters is explored. A virtual model is developed to evaluate the performances of a new flexion/extension and adduction/abduction pistons arrangement. Then, a control algorithm is simulated and implemented, as an example, to the flexion/extension motion of the new ankle mechanism. Finally, an experimental validation for the performances of the new proposed hydraulic ankle is conducted using the built hardware prototype, the results show significant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alfayad, S., Ouezdou, F., Namoun, F.: Humanoid robot implementing a ball and socket joint, US Patent 12/991,443 (2011)

  2. Takanobu, H., Guglielmelli, E., Tabayashi, H., Narita, S., Takanishi, A., Dario, P.: Remote interaction between human and humanoid robot, IARP First International Workshop on Humanoid and Human Friendly Robotics (1998)

  3. Katić, D., Vukobratović, M.: Survey of intelligent control techniques for humanoid robots. J. Intell. Robot. Syst. 37(2), 117–141 (2003). https://doi.org/10.1023/A:1024172417914

    Article  Google Scholar 

  4. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of honda humanoid robot. Int. Conf. Robot. Autom. 2, 1321:1326 (1998)

    Google Scholar 

  5. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., Maisonnier, B.: Mechatronic design of NAO humanoid. In: 2009 IEEE International Conference on Robotics and Automation. ISSN 1050:4729, p 769:774 (2009)

  6. Ulbrich, H., Buschmann, T., Lohmeier, S.: Design and realization of humanoid robots at AM-TUM, Proc. XII Intl. Symp., no. Diname (2007)

  7. Ogura, Y., Aikawa, H., Kazushi, S., Kondo, H., Morishima, A., Takanishi, H.L.A.: Development of a New Humanoid Robot WABIAN-2, Proc. of IEEE ICRA 2006, pp. 76–81, Orlando, Florida

  8. Hyon, S.H., Yoneda, T., Suewaka, D.: Lightweight hydraulic leg to explore agile legged locomotion. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 4655–4660 (2013)

  9. Cheng, G., Hyon, S.H., Morimoto, J., Aleš, U., Colvin, G., Scroggin, W., Jacobsen, S.C.: A humanoid research platform for exploring NeuroScience. In: Proceedings of the 2006 6th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS, vol. 21, p 182:187 (2006)

  10. Bentivegna, D.C., Atkeson, C.G., Kim, J.Y.: Compliant control of a hydraulic humanoid joint. In: Proceedings of the 2007 7th IEEERAS International Conference on Humanoid Robots, HUMANOIDS 2007, p 483:489 (2008)

  11. Semini, C., Tsagarakis, N.G., Guglielmino, E., Caldwell, D.G.: Design and experimental evaluation of the hydraulically actuated prototype leg of the HyQ robot. In: International Conference on Intelligent Robots and Systems - IROS, p 3640:3645 (2010)

  12. Kuindersma, S., Deits, R., Andr, M.F., Dai, H., Permenter, F., Pat, K., Russ, M.: Optimization-based locomotion planning, estimation and control design for the atlas humanoid robot (2014)

  13. Alfayad, S., Ouezdou, F.B., Namoun, F., Bruneau, O., Hénaff, P.: Three DOF hybrid mechanism for humanoid robotic application: modeling, design and realization. In: 2009 IEEE/RSJ International Conference Intelligent Robotic Systems IROS 2009, pp 4955–4961 (2009)

  14. Masaru Ogata, S.H.: Study on ankle mechanisms for walking robots. J. Robot. Mechatronics 16(1), 3201–3206 (2004)

    Google Scholar 

  15. Syrseloudis, C.E., Emiris, I.Z.: A parallel robot for ankle rehabilitation-evaluation and its design. In: 8th IEEE International Conference on BioInformatics and BioEngineering. https://doi.org/10.1109/BIBE.2008.4696826, pp 1–6 (2008)

  16. Aggogeri, F., Pellegrini, N., Adamini, R.: Functional Design in Rehabilitation: Modular Mechanisms for Ankle Complex, vol. 2016 (2016)

    Article  Google Scholar 

  17. Member, S.H., Suewaka, D., Torii, Y., Oku, N., Ishida, H.: Design and experimental evaluation of a fast torque-controlled hydraulic humanoid robot. IEEE/ASME Trans. Mechatron., 1–8. https://doi.org/10.1109/TMECH.2016.2628870 (2016)

    Article  Google Scholar 

  18. Omer, A., Ghorbani, R., Hashimoto, K., Lim, H., Takanishi, A.: A Novel Design for Adjustable Stiffness Artificial Tendon for the Ankle Joint of a Bipedal Robot: Modeling and Simulation, 1–22 (2015)

  19. Narioka, K., Homma, T., Hosoda, K.: Humanlike ankle-foot complex for a biped robot. In: 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), vol. 2012, pp 15–20, Osaka (2012). https://doi.org/10.1109/HUMANOIDS.2012.6651493

  20. Ouezdou, F.B., Alfayad, S., Almasri, B.: Comparison of several kinds of feet for humanoid robot. In: Proceedings of 2005 5th IEEE-RAS International Conference on Humanoid Robots, 2005, p 123:128 (2005)

  21. David, A., Chardonnet, J.R., Kheddar, A., Kaneko, K., Yokoi, K.: Study of an external passive shock-absorbing mechanism for walking robots. In: Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots, pp 435–440, Daejeon (2008). https://doi.org/10.1109/ICHR.2008.4755991

  22. Yang, Y., Semini, C., Tsagarakis, N.G., Guglielmino, E., Caldwell, D.G.: Leg mechanisms for hydraulically actuated robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, p 4669:4675 (2009)

  23. Ficanha, E.M., Rastgaar, M., Kaufman, K.R.: A two-axis cable-driven ankle-foot mechanism. Robot. Biomimetics 1(1), 17 (2014)

    Article  Google Scholar 

  24. Alfayad, S., Ouezdou, F.B., Namoun, F.: New 3-DOFs hybrid mechanism for ankle and wrist of humanoid robot: modeling, simulation, and experiments. J. Mech. Des. 133, 021005 (2011). ISSN 10500472

    Article  Google Scholar 

  25. Alfayad, S., Ouezdou, F.B., Namoun, F., Gheng, G.: High performance integrated electro-hydraulic actuator for robotics. Part II: Theoretical modelling, simulation, control & comparison with real measurements. Sens. Actuators, A 169, 124–132 (2011)

    Article  Google Scholar 

  26. Aphale, S.S.: Designing Orthogonal Gough Stewart Platforms with Robust Fault Tolerance. PhD thesis, Laramie, WY, USA. AAI3188203 (2005)

  27. Rabie, M.G.: Fluid Power Engineering. 2009, p. 420

  28. Gamez-Montero, P.J., Salazar, E., Castilla, R., Freire, J., Khamashta, M., Codina, E.: Misalignment effects on the load capacity of a hydraulic cylinder. Int. J. Mech. Sci. 51(2), 105:113 (2009)

    Google Scholar 

  29. Merritt, F., Systems, H.C., Wiley, J.: Electro-hydraulic Servo Valve construction, Models and Use, Control (1967)

  30. Faisandier, J.: Mécanismes hydrauliques et pneumatiques. Collection: Technique et ingénierie, série mécanique. Paris 8 edition (1999)

  31. Tran, X.B., Hafizah, N., Yanada, H.: Modeling of dynamic friction behaviors of hydraulic cylinders. Mechatronics 22(65), 75 (2012)

    Google Scholar 

  32. Ellman, A., Koivula, T.S., Vilenius, M.J.: Hydraulic cylinder seal friction - comparison of two seal designs. In: 15th International Conference on Fluid Sealing (1997)

Download references

Acknowledgments

This work was mainly funded by BIA- TURNKEY TEST SYSTEMS Company and the French National Agency for Research (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Alfayad.

Nomenclature

Nomenclature

𝜃 :

Angle of rotation [degree]

Q l e a k a g e :

Internal leakage flow rate [l/min]

α :

Angle of piston misalignment with respect to cylinder center line [degrees]

ΔP:

Difference in pressure across the servo valve [bar]

d :

Piston diameter in [m]

ρ :

Density of the hydraulic oil [kg/m3]

c :

Radial clearance [m]

ν :

Kinematic viscosity [m2/s]

c f :

Coefficient of viscous friction [N.s/mm]

μ f :

Coefficient of static friction [−]

β :

Bulk modulus of hydraulic oil [GPa]

\(v_{p_{i}}\) :

Velocity of the piston i[mm/s]

v f :

Velocity of the piston during the transition phase [mm/s]

S p :

cross-sectional area of the hydraulic piston [m2]

F s :

Friction force of static friction [N]

\(F_{f_{i}}\) :

Total friction force which operates against the direction of piston i movements. [N]

\(\tau ^{max}_{y}\) :

Maximum required torque in the sagittal plane [N.m]

\(\tau ^{max}_{x}\) :

Maximum required torque in the frontal plane [N.m]

τ y :

Flexion/Extenstion torque [N.m]

τ x :

Eversion/Inversion torque [N.m]

α :

Rotating angle between the two hydraulic pistons couples around the roll axis [degree]

X d :

Desired angles of rotation for the ankle [degree]

X m :

Measured angles of rotation for the ankle [degree]

L(i):

The stroke of the hydraulic piston [mm]

SC(i):

The outer diameter of the hydraulic pistons [mm]

E(i):

Piston connecting point with cables [−]

AN(i):

Air pressure outlet point from the piston [−]

F l o a d :

Weight of the load applied on the foot [N]

m l o a d :

Mass of the load applied on the foot [kg]

m f o o t :

Mass of the foot [kg]

x r o t a t i o n :

Distance between the frontal end point of the foot with the point of rotation of the foot [m]

T r o t a t i o n :

Rotation torque of the foot in the frontal plane [N.m]

g :

Gravitational constant [m/s2]

𝜃 x :

Angle of rotation in the frontal plane [degree]

𝜃 y :

Angle of rotation in the sagittal plane [degree]

𝜃 z :

Angle of rotation in the vertical plane [degree]

𝜃 t o e :

Angle of rotation of the toe of the ankle [degree]

I :

Servo valve current [A]

K :

Static flow gain constant \([\frac {m^{3}/s}{A}]\)

T :

Time constant of first order equation [s]

x v :

Displacement of the servo valve spool [mm]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellatif, A., Alfayad, S., Hildebrandt, AC. et al. Development of a New Hydraulic Ankle for HYDROïD Humanoid Robot. J Intell Robot Syst 92, 293–308 (2018). https://doi.org/10.1007/s10846-017-0750-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0750-z

Keywords

Navigation