Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Dual-eyes Vision-based Docking System for Autonomous Underwater Vehicle: an Approach and Experiments

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A critical challenge for autonomous underwater vehicles (AUVs) is the docking operation for applications such as sleeping under the mother ship, recharging batteries, transferring data, and new mission downloading. The final stage of docking at a unidirectional docking station requires the AUV to approach while keeping the pose (position and orientation) of the vehicle within an allowable range. The appropriate pose therefore demands a sensor unit and a control system that have high accuracy and robustness against disturbances existing in a real-world underwater environment. This paper presents a vision-based AUV docking system consisting of a 3D model-based matching method and Real-time Multi-step Genetic Algorithm (GA) for real-time estimation of the robot’s relative pose. Experiments using a remotely operated vehicle (ROV) with dual-eye cameras and a separate 3D marker were conducted in a small indoor pool. The experimental results confirmed that the proposed system is able to provide high homing accuracy and robustness against disturbances that influence not only the captured camera images but also the movement of the vehicle. A successful docking operation using stereo vision that is new and novel to the underwater vehicle environment was achieved and thus proved the effectiveness of the proposed system for AUV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Balasuriya, B.A.A.P., Takai, M., Lam, W.C., Ura, T., Kuroda, Y.: Vision based autonomous underwater vehicle navigation: underwater cable tracking. Proc. MTS/IEEE OCEANS Conf. 2, 1418–1424 (1997)

    Article  Google Scholar 

  2. Son-Cheol, Y., Ura, T., Fujii, T., Kondo, H.: Navigation of autonomous underwater vehicles based on artificial underwater landmarks. Proc. MTS/IEEE OCEANS Conf. 1, 409–416 (2001)

    Google Scholar 

  3. Cowen, S., Briest, S., Dombrowski, J.: Underwater docking of autonomous undersea vehicle using optical terminal guidance. Proc. MTS/IEEE OCEANS Conf. 2, 1143–1147 (1997)

    Article  Google Scholar 

  4. Teo, K., Goh, B., Chai, O.K.: Fuzzy docking guidance using augmented navigation system on an AUV. IEEE J. Ocean. Eng. 40(2), 349–361 (2015)

    Article  Google Scholar 

  5. Feezor, M.D., Yates Sorrell, F., Blankinship, P.R., Bellingham, J.G.: Autonomous underwater vehicle Homing/Docking via electromagnetic guidance. IEEE J. Ocean. Eng. 26(4), 515–521 (2001)

    Article  Google Scholar 

  6. McEwen, R.S., Hobson, B.W., McBride, L., Bellingham, J.G.: Docking control system for a 54-cm-diameter (21-in) AUV. IEEE J. Ocean. Eng. 33(4), 550–562 (2008)

    Article  Google Scholar 

  7. Teo, K., An, E., Beaujean, P.-P.J.: A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances. IEEE J. Ocean. Eng. 37(2), 143–155 (2012)

    Article  Google Scholar 

  8. Negre, A., Pradalier, C., Dunbabin, M.: Robust vision-based underwater homing using self similar landmarks. J Field Robot., Wiley-Blackwell, Special Issue on Field and Service Robot. 25(6-7), 360–377 (2008)

    MATH  Google Scholar 

  9. Park, J.-Y., Jun, B.-H., Lee, P.-M., Oh, J.: Experiments on vision guided docking of an autonomous underwater vehicle using one camera. IEEE J. Ocean. Eng. 36(1), 48–61 (2009)

    Article  Google Scholar 

  10. Palomeras, N., Ridao, P., Ribas, D., Vallicrosa, G.: Autonomous i-AUV docking for fixed-base manipulation. Proc. Int. Federation Autom. Control 47(3), 12160–12165 (2014)

    Google Scholar 

  11. Foresti, G.L., Gentili, S., Zampato, M.: A vision-based system for autonomous underwater vehicle navigation. Proc. MTS/IEEE OCEANS Conf. 1, 195–199 (1998)

    Google Scholar 

  12. Ura, T., Kurimoto, Y., Kondo, H., Nose, Y., Sakamaki, T., Kuroda, Y.: Observation behavior of an AUV for ship wreck investigation. Proc. MTS/IEEE OCEANS Conf. 3, 2686–2691 (2005)

    Google Scholar 

  13. Myint, M., Yonemori, K., Yanou, A., Ishiyama, S., Minami, M.: Robustness of visual-servo against air bubble disturbance of underwater vehicle system using three-dimensional marker and dual-eye cameras. In: Proceedings of the MTS/IEEE OCEANS Conference, pp. 1–8 (2015)

  14. Myint, M., Yonemori, K., Yanou, A., Lwin, K.N., Minami, M., Ishiyama, S.: Visual servoing for underwater vehicle using dual-eyes evolutionary real-time pose tracking. J. Robot. Mechatronics 28(4), 543–558 (2016)

    Article  Google Scholar 

  15. Myint, M., Yonemori, K., Yanou, A., Minami, M., Ishiyama, S.: Visual-servo-based autonomous docking system for underwater vehicle using dual-eyes camera 3D-pose tracking. In: Proceedings of the 2015 IEEE/SICE International Symposium on System Integration (SII), pp. 989–994 (2015)

  16. Myint, M., Yonemori, K., Yanou, A., Lwin, K.N., Minami, M., Ishiyama, S.: Visual-based deep sea docking simulation of underwater vehicle using dual-eyes cameras with lighting adaptation. In: Proceedings of the MTS/IEEE OCEANS Conference, pp. 1–8 (2016)

  17. Myint, M., Yonemori, K., Yanou, A., Lwin, K.N., Mukada, N., Minami, M.: Dual-eyes visual-based sea docking for sea bottom battery recharging. In: Proceedings of the MTS/IEEE OCEANS Conference Monterey, pp. 1–7 (2016)

  18. Stokey, R., Purcell, M., Forrester, N., Austin, T., Goldsborough, R., Allen, B., von Alt, C.: A docking system for REMUS, an autonomous underwater vehicle. Proc. MTS/IEEE OCEANS Conf. 2, 1132–1136 (1997)

    Article  Google Scholar 

  19. Park, J.Y., Jun, B.H., Lee, P.M., Oh, J.H., Lim, Y.K.: Underwater docking approach of an under-actuated AUV in the presence of constant ocean current. IFAC Control Appl. Marine Syst. 43(20), 5–10 (2010)

    Google Scholar 

  20. Park, J.-Y., Jun, B.-H., Lee, P.-M., Lee, F.-Y., Oh, J.-h.: Experiment on underwater docking of an autonomous underwater vehicle ISimI using optical terminal guidance. In: OCEANS’2007-Europe, pp. 1–6 (2007)

  21. Dunbabin, M., Lang, B., Wood, B.: Vision-based docking using an autonomous surface vehicle. In: IEEE International Conference on Robotics and Automation, pp. 26–32. Pasadena (2008)

  22. Batista, P., Silvestre, C., Oliveira, P.: A two-step control strategy for docking of autonomous underwater vehicles. In: American Control Conference, pp. 5395–5400. Fairmont QueenElizabeth, Montrreal, Canada (2012)

  23. Palomeras, N., Penalver, A., Massot-Campos, M., Vallicrosa, G.N., Gre, P.L., Fernandez, J.J., Ridao, P., Sanz, P.J., Oliver-Codina, G., Palomer, A.: I-AUV docking and intervention in a Subsea panel. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2279–2285. Chicago (2014)

  24. Vasilijevic, A., Borovic, B., Vukic, Z.: Underwater vehicle localization with complementary filter: performance analysis in the shallow water environment. J. Intell. Robot. Syst. 68(3-4), 373–386 (2012)

    Article  Google Scholar 

  25. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011)

  26. Kasaei, S.H., Oliveira, M., Lim, G.H., Lopes, L.S., Tomé, A.M.: Interactive open-ended learning for 3D object recognition: an approach and experiments. J. Intell. Robot. Syst. 80(3-4), 537–553 (2015)

    Article  Google Scholar 

  27. Wu, P., Liu, Y., Ye, M., Li, J., Du, S.: Fast and adaptive 3D reconstruction with extensively high completeness. In: IEEE Transactions on Multimedia (2016)

  28. Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S.M., Szeliski, R.: Building rome in a day. Commun. ACM 54(10), 105–112 (2011)

    Article  Google Scholar 

  29. Lwin, K.N., Yonemori, K., Myint, M., Naoki, M., Minami, M., Yanou, A., Matsuno, T.: Performance analyses and optimization of real-time multi-step ga for visual-servoing based underwater vehicle. In: Techno-oceans (2016)

  30. Song, W., Fujia, Y., Minami, M.: 3-D visual servoing by feedforward evolutionary recognition. J. Adv. Mech. Des., Syst. Manuf. 4(4), 739–755 (2010)

    Article  Google Scholar 

  31. Suzuki, H., Minami, M.: Visual servoing to catch fish using global/local GA search. IEEE/ASME Trans. Mechatronics 10(3), 352–357 (2005)

    Article  Google Scholar 

  32. Song, W., Minami, M., Aoyagi, S.: On-line stable evolutionary recognition based on unit quaternion representation by Motion-Feedforward compensation. Int. J. Intell. Comput. Medical Sci. Image Process. (IC-MED) 2(2), 127–139 (2008)

    Google Scholar 

  33. Song, W., Minami, M.: On-line motion-feedforward pose recognition invariant for dynamic hand-eye motion. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1047–1052 (2008)

  34. Song, W., Minami, M.: Stability / precision improvement of 6-DoF visual servoing by motion feedforward compensation and experimental evaluation. In: IEEE International Conference on Robotics and Automation, pp. 722–729 (2009)

  35. Song, W., Minami, M.: Hand and eye-vergence dual visual servoing to enhance observability and stability. In: IEEE International Conference on Robotics and Automation, pp. 714–721 (2009)

  36. Minami, M., Agbanhan, J., Asakura, T.: Evolutionary scene recognition and simultaneous position/orientation detection. In: Soft Computing in Measurement and Information Acquisition, pp. 178–207. Springer, Berlin (2003)

  37. Suzuki, H., Minami, M.: Real-time recognition of multiple pedestrians using car-mouted camera. Electron. Commun. Part 3 89(4), 21–33 (2006)

    Google Scholar 

  38. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Infor. Process. Lett. 85(6), 317–325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lin, H.I.: A fast and unified method to find a minimum-jerk robot joint trajectory using particle swarm optimization. J. Intell. Robot. Syst. 75(3-4), 379 (2014)

    Article  Google Scholar 

  40. Polden, J., Pan, Z., Larkin, N., van Duin, S.: Adaptive partial shortcuts: path optimization for industrial robotics. J. Intell. Robot. Syst 86(1), 35–47 (2017)

    Article  Google Scholar 

  41. Mousavian, S.H., Koofigar, H.R.: Identification-based robust motion control of an AUV: optimized by particle swarm optimization algorithm. J. Intell. Robot. Syst. 85(2), 331–352 (2017)

    Article  Google Scholar 

  42. Ma, X.M.: Application of ant colony algorithm in PID parameter optimization for mining hoist direct torque control system. In: ICACC’09 International Conference of Advanced Computer Control, pp. 632–636 (2009)

Download references

Acknowledgments

The authors would like to thank the Kowa cooperation for their collaboration in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myo Myint.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myint, M., Yonemori, K., Lwin, K.N. et al. Dual-eyes Vision-based Docking System for Autonomous Underwater Vehicle: an Approach and Experiments. J Intell Robot Syst 92, 159–186 (2018). https://doi.org/10.1007/s10846-017-0703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0703-6

Keywords

Navigation