Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Decentralized Multi-Robot Formation Control with Communication Delay and Asynchronous Clock

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper investigates the leader–follower formation control problem for a group of networked nonholonomic mobile robots that are subject to bounded time-varying communication delays and an asynchronous clock. First we convert the formation control problem into a trajectory tracking problem, and then a fully distributed unified control framework based on the receding horizon control is implemented to converge the tracking errors. By adding an auxiliary acceleration term into the receding horizon controller, the framework is able to solve the impractical velocity jump problem. Considering the time-varying delays, the timing and order features of the messages are utilized to guarantee their logical correctness. To compensate for the delay effect, an improved control framework that exploits the predictability of the receding horizon controller is proposed. The asynchronous clock problem, which makes the communication delay unmeasurable, is studied. We give a definition of the syn point that is inspired from investigation of the property that messages are received out of order in a bounded time-varying delayed network. A novel method that detects the occurrence of syn points is integrated into the control framework to solve the asynchronous clock problem. Finally the effectiveness of the proposed approaches is demonstrated in the Player/Stage simulation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE T. Robotic. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  2. Chaimowicz, L., Cowley, A., Gomez-Ibanez, D., Grocholsky, B., Hsieh, M., Hsu, H., Keller, J., Kumar, V., Swaminathan, R., Taylor, C.: Deploying air-ground multi-robot teams in urban environments Multi-Robot Systems. From Swarms to Intelligent Automata Volume III, pp. 223–234. Springer (2005)

  3. Chen, H., Allgower, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability 1997 European Control Conference (ECC), pp. 1421–1426. IEEE (1997)

  4. Chen, J., Sun, D., Yang, J., Chen, H.: A leader-follower formation control of multiple nonholonomic mobile robots incorporating receding-horizon scheme. International Journal of Robotics Research (2009)

  5. Cheng-Lin, L., Yu-Ping, T.: Formation control of second-order dynamic agents with heterogeneous communication delays. In: 2008 27th Chinese Control Conference, pp. 536–540. IEEE (2008)

  6. Collett, T.H., MacDonald, B.A., Gerkey, B.P.: Player 2.0: Toward a practical robot programming framework. In: Proceedings of the Australasian Conference on Robotics and Automation (ACRA 2005), p. 145 (2005)

  7. Dai, Y., Lee, S.G.: The leader-follower formation control of nonholonomic mobile robots. Int. J. Control Autom. 10(2), 350–361 (2012)

    Article  Google Scholar 

  8. D’Andréa-Novel, B., Bastin, G., Campion, G.: Modelling and control of non-holonomic wheeled mobile robots. In: 1991 IEEE International Conference on Robotics and Automation, pp. 1130–1135. IEEE (1991)

  9. Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE T. Robot. Autom. 18(5), 813–825 (2002)

    Article  Google Scholar 

  10. Defoort, M., Floquet, T., Kokosy, A., Perruquetti, W.: Sliding-mode formation control for cooperative autonomous mobile robots. IEEE T. Ind. Electron. 55(11), 3944–3953 (2008)

    Article  Google Scholar 

  11. Dong, X., Xi, J., Lu, G., Zhong, Y.: Formation control for high-order linear time-invariant multiagent systems with time delays. IEEE Trans. Control Netw. Syst. 1(3), 232–240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dunbar, W.B., Murray, R.M.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4), 549–558 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Findeisen, R., Imsland, L., Allgower, F., Foss, B.A.: State and output feedback nonlinear model predictive control: An overview. Eur. J. Control 9(2), 190–206 (2003)

    Article  MATH  Google Scholar 

  14. Franzè, G., Lucia, W.: An obstacle avoidance model predictive control scheme for mobile robots subject to nonholonomic constraints: A sum-of-squares approach. J. Frankl. Inst. 352(6), 2358–2380 (2015)

    Article  MathSciNet  Google Scholar 

  15. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th international conference on advanced robotics, vol. 1, pp. 317–323 (2003)

  16. Gustavi, T., Hu, X.: Observer-based leader-following formation control using onboard sensor information. IEEE T. Robot. 24(6), 1457–1462 (2008)

    Article  Google Scholar 

  17. Hougen, D.F., Benjaafar, S., Bonney, J.C., Budenske, J.R., Dvorak, M., Gini, M., French, H., Krantz, D.G., Li, P.Y., Malver, F., et al.: A miniature robotic system for reconnaissance and surveillance. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, vol. 1, pp. 501–507. IEEE (2000)

  18. Houska, B., Ferreau, H.J., Diehl, M.: An auto-generated real-time iteration algorithm for nonlinear mpc in the microsecond range. Automatica 47(10), 2279–2285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Izadi, H.A., Gordon, B.W., Zhang, Y.: Decentralized receding horizon control for cooperative multiple vehicles subj ect to communication delay. J. Guid., Control, Dyn. 32(6), 1959–1965 (2009)

    Article  Google Scholar 

  20. Izadi, H.A., Gordon, B.W., Zhang, Y.: Hierarchical decentralized receding horizon control of multiple vehicles with communication failures. IEEE T. Aero. Elec. Sys. 49(2), 744–759 (2013)

    Article  Google Scholar 

  21. Jiang, L., Zhang, R.: Stable formation control of multi-robot system with communication delay, vol. 9 (2012)

  22. Lewis, M.A., Tan, K.H.: High precision formation control of mobile robots using virtual structures. Auton. Robot. 4(4), 387–403 (1997)

    Article  Google Scholar 

  23. Li, X., Xiao, J., Cai, Z.: Backstepping based multiple mobile robots formation control. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 887–892. IEEE (2005)

  24. Liu, J., Muñoz de la Peña, D., Christofides, P.D., Davis, J.F.: Lyapunov-based model predictive control of nonlinear systems subject to time-varying measurement delays. Int. J. Adapt. Control 23(8), 788–807 (2009)

    Article  MATH  Google Scholar 

  25. Münz, U., Papachristodoulou, A., Allgöwer, F.: Delay-dependent rendezvous and flocking of large scale multi-agent systems with communication delays. In: 2008 47th IEEE Conference on Decision and Control, pp. 2038–2043. IEEE (2008)

  26. Nourbakhsh, I.R., Sycara, K., Koes, M., Yong, M., Lewis, M., Burion, S.: Human-robot teaming for search and rescue. IEEE Pervas. Comput. 4(1), 72–79 (2005)

    Article  Google Scholar 

  27. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE T. Automat. Contr. 49(9), 1520–1533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Peng, Z., Wen, G., Rahmani, A., Yu, Y.: Leader-follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach. Robot. Auton. Syst. 61(9), 988–996 (2013)

    Article  Google Scholar 

  29. Ren, W., Beard, R.: Decentralized scheme for spacecraft formation flying via the virtual structure approach. J. Guid. Control Dyn. 27(1), 73–82 (2004)

    Article  Google Scholar 

  30. Sadowska, A., Den Broek, T.V., Huijberts, H., van de Wouw, N., Kostić, D., Nijmeijer, H.: A virtual structure approach to formation control of unicycle mobile robots using mutual coupling. Int. J. Control 84(11), 1886–1902 (2011)

  31. Sanchez, J., Fierro, R.: Sliding mode control for robot formations. In: 2003 IEEE International Symposium on Intelligent Control, pp. 438–443. IEEE (2003)

  32. Shao, J., Xie, G., Wang, L.: Leader-following formation control of multiple mobile vehicles. IET Control Theory Appl. 1(2), 545–552 (2007)

    Article  Google Scholar 

  33. Sipahi, R., Niculescu, S.I., Abdallah, C.T., Michiels, W., Gu, K.: Stability and stabilization of systems with time delay. IEEE Contr. Syst. Mag. 31(1), 38–65 (2011)

    Article  Google Scholar 

  34. Stipanović, D. M., Inalhan, G., Teo, R., Tomlin, C.J.: Decentralized overlapping control of a formation of unmanned aerial vehicles. Automatica 40(8), 1285–1296 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stoeter, S.A., Rybski, P.E., Stubbs, K.N., McMillen, C.P., Gini, M., Hougen, D.F., Papanikolopoulos, N.: A robot team for surveillance tasks: Design and architecture. Robot Auton. Syst. 40(2), 173–183 (2002)

    Article  MATH  Google Scholar 

  36. Sun, B., Zhu, D., Yang, S.X.: A bioinspired filtered backstepping tracking control of 7000-m manned submarine vehicle. IEEE Trans. Ind. Electron. 61(7), 3682–3693 (2014)

    Article  Google Scholar 

  37. Tian, Y.P., Zhang, Y.: High-order consensus of heterogeneous multi-agent systems with unknown communication delays. Automatica 48(6), 1205–1212 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vidal, R., Shakernia, O., Sastry, S.: Formation control of nonholonomic mobile robots with omnidirectional visual servoing and motion segmentation. In: 2003 IEEE International Conference on Robotics and Automation, vol. 1, pp. 584–589. IEEE (2003)

  39. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-inspired robot construction team. Science 343(6172), 754–758 (2014)

    Article  Google Scholar 

  40. Xu, D., Zhang, X., Zhu, Z., Chen, C., Yang, P.: Behavior-based formation control of swarm robots, vol. 2014 (2014)

  41. Xu, Z., Schröter, M., Necsulescu, D., Ma, L., Schilling, K.: Formation control of car-like autonomous vehicles under communication delay. In: 2012 31st Chinese Control Conference, pp. 6376–6383. IEEE (2012)

  42. Yoon, Y., Shin, J., Kim, H.J., Park, Y., Sastry, S.: Model-predictive active steering and obstacle avoidance for autonomous ground vehicles. Control Eng. Pract. 17(7), 741–750 (2009)

    Article  Google Scholar 

  43. Yoshioka, C., Namerikawa, T.: Formation control of nonholonomic multi-vehicle systems based on virtual structure. In: 17th IFAC World Congress, pp. 5149–5154 (2008)

Download references

Acknowledgments

This work was supported by the China Scholarship Council (CSC) under Grant No. 201206110039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Guan, F., Perneel, L. et al. Decentralized Multi-Robot Formation Control with Communication Delay and Asynchronous Clock. J Intell Robot Syst 89, 465–484 (2018). https://doi.org/10.1007/s10846-017-0557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0557-y

Keywords

Navigation