Abstract
This paper presents a novel nonlinear sliding-mode differentiator-based complete-order observer for structure and motion identification with a calibrated monocular camera. In comparison with earlier work that requires prior knowledge of either the Euclidean geometry of the observed object or the linear acceleration of the camera and is restricted to establishing stability and convergence from image-plane measurements of a single tracked feature, the proposed scheme assumes partial velocity state feedback to asymptotically identify the true-scale Euclidean coordinates of numerous observed object features and the unknown motion parameters. The dynamics of the motion parameters are assumed to be described by a model with unknown parameters that incorporates a bounded uncertainty, and a Lyapunov analysis is provided to prove that the observer yields exponentially convergent estimates that converge to a uniform ultimate bound under a generic persistency of excitation condition. Numerical and experimental results are obtained that demonstrate the robust performance of the current scheme in the presence of model error and measurement noise.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Chen, X., Kano, H.: A new state observer for perspective systems. IEEE Trans. Autom. Control. 47(4), 658–663 (2002). doi:10.1109/9.995045
Karagiannis, D., Astolfi, A.: A new solution to the problem of range identication in perspective vision systems. IEEE Trans. Autom. Control. 50(12), 2074–2077 (2005). doi:10.1109/TAC.2005.860269
Karagiannis, D., Carnevale, D., Astolfi, A.: Invariant manifold based reduced-order observer design for nonlinear systems. IEEE Trans. Autom. Control. 53(11), 2602–2614 (2008)
Jankovic, M., Ghosh, B.K.: Visually guided ranging from observations of points, lines and curves via an identier based nonlinear observer. Syst. Control Lett. 25, 63–73 (1995)
Dixon, W.E., Fang, Y., Dawson, D.M., Flynn, T.J.: Range identication for perspective vision systems. IEEE Trans. Autom. Control. 48(12), 2232–2238 (2003)
Luca, A. D., Oriolo, G., Giordano, P. R.: On-line estimation of feature depth for image-based visual servoing schemes In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 2823–2828, Roma (2007)
Ma, L., Chen, Y., Moore, K.L.: Range identication for perspective dynamic system with single homogeneous observation In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 5207–5211, New Orleans (2004)
Dani, A.P., Fischer, N.R., Kan, Z., Dixon, W.E.: Globally exponentially stable observer for vision-based range estimation. Mechatronics 22(4), 381–389 (2012). doi:10.1016/j.mechatronics.2011.10.001
Grave, I., Tang, Y.: A new observer for perspective vision systems under noisy measurements. IEEE Trans. Autom. Control. 60(2), 503–508 (2015)
Tsai, R.Y., Huang, T.S.: Estimating three-dimensional motion parameters of a rigid planar patch. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1147–1152 (1981)
Conroy, J., Humbert, S.J.: Structure from motion in computationally constrained systems In: Proceedings of SPIE 8725. doi:10.1117/12.2015296 (2013)
Morbidi, F., Prattichizzo, D.: Range estimation from a moving camera: an immersion and invariance approach In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 2810–2815, Kobe (2009)
Dahl, O., Wang, Y., Lynch, A.F., Heyden, A.: Observer forms for perspective systems. Automatica 46(11), 1829–1834 (2010)
Nath, N., Braganza, D., Dawson, D.M., Burg, T.: Range identification for perspective vision systems: a position based approach. Int. J. Robot. Autom., 206. doi:10.2316/Journal.206.2011.2.206-3409
Keshavan, J., Humbert, J.S.: An optical flow-based solution to the problem of range identification in perspective vision systems. J. Intell. Robot Syst. (2016). doi:10.1007/s10846-016-0404-6
Broida, T.J., Chellappa, R.: Estimation of object motion parameters from noisy images. IEEE Trans. Pattern Anal. Mach. Intell. 8(1), 90–99 (1986)
Gennery, D.B.: Tracking known three-dimensional objects In: Proceedings of AAAI 2nd National Conference on Artificial Intelligence, pp. 13–17 Pittsburgh (1982)
Gennery, D.B.: Visual tracking of known three-dimensional objects. Int. J. Comp. Vision 7(3), 243–270 (1992)
Dahl, O., Nyberg, F., Heyden, A.: Nonlinear and adaptive observers for perspective dynamic systems In: Proceedings of American Control Conference (ACC), pp. 1966–1971, New York (2007)
Soatto, S., Frezza, R., Perona, P.: Motion Estimation via Dynamic Vision. IEEE Trans. Autom. Control. 41(41), 393–412 (1996)
Dani, A., Fischer, N., Dixon, W.E.: Single camera structure motion. IEEE Trans. Autom. Control. 57(1), 241–246 (2012)
Chen, X., Kano, H.: State observer for a class of nonlinear systems and its application to machine vision. IEEE Trans. Autom. Control. 49(11), 2085–2091 (2004)
Dahl, O., Heyden, A.: Dynamic structure from motion based on nonlinear adaptive observers In: Proceedings of International Conference on Pattern Recognition, pp 1–4 (2008)
Chitrakaran, V.K., Dawson, D.M., Dixon, W.E., Chen, J.: Identification of a moving object’s velocity with a fixed camera. Automatica 41(3), 553–562 (2005)
Sturm, P., Triggs, B.: A factorization based algorithm for multi-image projective structure and motion. Lect. Notes Comput. Sci. 1065, 709–720 (1996)
Ramalingam, S., Lodha, S., Sturm, P.: A generic structure-from-motion framework. Comput. Vis. Image Understand. 103(3), 218–228 (2006)
Oliensis, J.: A critique of structure-from-motion algorithms. Comput. Vis. Image Underst. 80, 172–214 (2000)
Oliensis, J., Hartley, R.: Iterative extensions of the strum/triggs algorithm: Convergence and nonconvergence. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2217–2233 (2007)
Kahl, F., Hartley, R.: Multiple-view geometry under the \(\mathcal {L}_{\infty -norm}\). IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1603–1617 (2008)
Azarbayejani, A., Pentland, A.P.: Recursive estimation of motion, structure, and focal length. IEEE Trans. Pattern Anal. Mach. Intell. 17(6), 562–575 (1995). doi:10.1109/34.387503
Matthies, L., Kanade, T., Szeliski, R.: Kalman filter-based algorithm for estimating depth from image sequence. Int. J. Comput. Vision 3, 209–236 (1989)
Sridhar, B., Soursa, R., Hussein, B.: Passive range estimation from rotorcraft low-altitude flight. Inter. J. Mach. Vision App. 6, 10–24 (1993)
Chiuso, A., Favaro, P., Jin, H., Soatto, S.: Structure from motion causally integrated over time. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 523–535 (2002)
Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping (slam): Part II. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)
Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)
Ayache, N., Faugeras, O.: Maintaining representations of the environment of a mobile robot. IEEE Trans. Robot. Autom. 6(5), 804–819 (1989)
Dickmanns, E.D., Graefe, V.: Dynamic monocular machine vision. Mach. Vision App. 1, 223–240 (1988)
Faugeras, O.D., Ayache, N., Faverjon, B.: Building visual maps by combining noisy stereo measurements In: Proceedings of IEEE Conference on Robotics and Automation San Francisco (1986)
Young, G.S., Chellappa, R.: 3D motion estimation using a sequence of noisy stereo images: Models, estimation and uniqueness. IEEE Trans. Pattern Anal. Mach. Intell. 12(8), 735–759 (1990)
Reif, K., Sonnermann, F., Unbehauen, R.: An EKF-based nonlinear observer with a prescribed degree of stability. Automatica 34, 1119–1123 (1998)
Abdursul, R., Inaba, H., Ghosh, B.: Nonlinear observers for perspective time-invariant linear systems. Automatica 40(3), 481–490 (2004)
Ghosh, B., Loucks, E.: A realization theory for perspective systems with applications to parameter estimation problems in machine vision. IEEE Trans. Autom. Control. 41(12), 1706–1722 (1996)
Ghosh, B., Loucks, E.: A perspective theory for motion and shape estimation in machine vision. SIAM J. Control Optim. 33(5), 1530–1559 (1995)
Ma, L., Cao, C., Hovakimayan, N., Woolsey, C., Dixon, W.E.: Fast estimation for range identification in the presence of unknown motion parameters. IMA J. Appl. Math. 75(2), 165–189 (2010)
Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)
Suzuki, S., Furuta, K., Shiratori, S.: Adaptive impact shot control by pendulum like juggling system. Int. J. Japan Soc. Mech. Eng. 46(3), 973–981 (2003)
Smaoui, M., Brun, X., Thomasset, D.: A robust differentiator-controller design for an electropneumatic system In: Proceedings of IEEE Conference on Decision and Control, pp. 4385–4390, Seville (2005)
Sidhom, L., Smaoui, M., Thomasset, D., Brun, X., Bideaux, E.: Adaptive higher order sliding modes for two-dimensional derivative estimation. IFAC World Congress, pp. 3063–3071 Mliano (2011)
Soatto, S., Perona, P.: Reducing structure from motion: a general framework for dynamic vision. Part 1: Modeling. IEEE Trans. Pattern Anal. Mach. Intell. 20(9), 933–942 (1996)
Sastry, S., Bodson, M.: Adaptive control: stability, convergence, and robustness Upper Saddle River (NJ): Prentice Hall (1989)
Khalil, H.K.: Nonlinear systems. 3rd ed Prentice Hall (2002)
Bouguet, J.: Camera calibration toolbox for MATLAB http://www.vision.caltech.edu/bouguetj (2007) [retrieved 15 (2014)
Lucas, B. D., Kanade, T.: An iterative image registration technique with an application to stereo vision In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)
Shi, J., Tomasi, C.: Good features to track In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600, Seattle (1994)
Birchfield, S.: KLT: an implementation of the Kanade-Lucas-Tomasi feature tracker http://www.ces.clemson.edu/~stb/klt/ [retrieved 15 March 2015] (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Keshavan, J., Humbert, J.S. An Analytically Stable Structure and Motion Observer Based on Monocular Vision. J Intell Robot Syst 86, 495–510 (2017). https://doi.org/10.1007/s10846-017-0470-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-017-0470-4