Abstract
Fixed-time coordination in dynamical systems means system trajectories converge to the desired trajectories in determined time which is independent of the system initial states. In this paper, a novel fixed-time coordination control approach for nonlinear telerobotics system with asymmetric time-varying delays is proposed to provide faster convergence rate and higher convergence precision. The neural networks (NNs) and the parameter adaptive method are combined to approximate the uncertain model of the teleoperator, the upper bound of the NNs estimation errors and the external disturbances. Then the corresponding adaptive NNs fixed-time controller is designed without using the derivatives of the time-varying delays. Dynamic surface control (DSC) is employed to avoid the singularity. Moreover, considering the nonpassive human operator and remote environment insert forces, the stability criterion for the closed-loop system is also developed. Then by choosing proper Lyapunov functions, the master-slave coordination errors converging into a deterministic domain in fixed-time with the new controller is proved in the presence of the exogenous forces from human operator and remote environment. Furthermore, the exact convergence time is presented only with the designed parameters. Some comparisons are conducted in simulation to show the superior performance of the proposed control approach. Finally, experimental results are also given to demonstrate the effectiveness of the new control method.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: An history survey. Automatica 42(12), 2035–2057 (2006)
Yoon, W.K., Goshozono, T., Kawabe, H., Kinami, M., Tsumaki, Y., Uchiyama, M., et al.: Model-based space robot teleoperation of ETS-VII manipulator. IEEE Trans. Robot. Autom. 20(3), 602–612 (2004)
Ishii, C., Mikami, H., Nakakuki, T., Hashimoto, H.: Bilateral control for remote controlled robotic forceps system with time varying delay. In: IEEE International Conference on Human System Interactions (HSI), pp 330–335, Japan (2011)
Hashemzadeh, F., Hassanzadeh, I., Tavakoli, M., Alizadeh, G.: Adaptive control for state synchronization of nonlinear haptic telerobotic systems with asymmetric varying time delays. J. Intell. Robot. Syst. 68(3-4), 245–259 (2012)
Islam, S., Liu, X.P., El Saddik, A.: Bilateral shared autonomous systems with passive and nonpassive input forces under time varying delays. ISA Transactions 54, 218–228 (2015)
Li, Z.J., Xia, Y. Q.: Adaptive neural network control of bilateral teleoperation with unsymmetrical stochastic delays and unmodeled dynamics. Int J Robust Nonlinear Control 24(11), 1628–1652 (2014)
Islam, S., Liu, X.P., El Saddik, A.: Teleoperation systems with symmetric and unsymmetric time varying communication delay. IEEE Trans. Instr. Measu. 62(11), 2943–2953 (2013)
Lee, D., Spong, M.W.: Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. 22(2), 269–281 (2006)
Hua, C.C., Liu, X.P.: Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays. IEEE Trans. Robot. 25(5), 925–932 (2010)
Li, Z.J., Su, C.Y.: Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties. IEEE Trans. Neur. Netwo. Lear. Syst. 24(9), 1400–1413 (2013)
Hua, C.C., Liu, X.P.: Teleoperation over the Internet with/without velocity signal. IEEE Trans. Instr. Meas. 60(1), 4–13 (2011)
Yu, S.H., Yu, X.H., Shirinzadeh, B.J., Man, Z.H.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)
Wang, L.Y., Chai, T.Y., Zhai, L.F.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Indus. Elect. 56(9), 3296–3304 (2009)
Yang, Y.N., Hua, C.C., Guan, X.P.: Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system. IEEE Trans. Fuzzy Systems 22(3), 631–641 (2014)
Lu, K.F., Xia, Y.Q.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013)
Su, Y.X., Swevers, J.: Finite-time tracking control for robot manipulators with actuator saturation. Robot. Comput. Integr. Manuf. 30(2), 91–98 (2014)
Huang, X.Q., Lin, W., Yang, B.: Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41(5), 881–888 (2005)
Zhao, D., Li, S., Zhu, Q., Gao, F.: Robust finite-time control approach for robotic manipulators. IET Control Theory Appl. 4(1), 1–15 (2010)
Zhang, X.F., Feng, G., Sun, Y.H.: Finite-time stabilization by state feedback control for a class of time-varying nonlinear systems. Automatica 48(3), 499–504 (2012)
Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)
Polykov, A., Fridman, L.: Stability notions and Lyapunov functions for sliding mode control systems. J. Franklin Inst. 351(4), 1831–1865 (2014)
Zuo, Z.Y.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54, 305–309 (2015)
Cuong, V.P., Wang, Y.N.: Robust adaptive trajectory tracking sliding mode control based on neural networks for cleaning and detecting robot manipulators. J. Intell. Rob. Syst. 79(1), 101–114 (2015)
Liu, H.T., Zhang, T.: Adaptive neural network finite-time control for uncertain robotic manipulators. J. Intell. Rob. Syst. 75(3-4), 363–377 (2014)
Hua, C.C., Yang, Y.N., Guan, X.P.: Neural network-based adaptive position tracking control for bilateral teleoperation under constant time delay. Neurocomputing 113, 204–212 (2013)
Ye, J: Tracking control of a non-holonomic wheeled mobile robot using improved compound cosine function neural networks. Int. J. Control 88(2), 364–373 (2015)
Leeghim, H., Kim, D.: Adaptive neural control of spacecraft using control moment gyros. Adv. Space Res. 55(5), 1382–1393 (2015)
Zhou, Q., Shi, P., Xu, S., Li, H.: Observer-based adaptive neural network control for nonlinear stochastic systems with time-delay. IEEE Trans. Neur. Netwo. Lear. Syst. 24(1), 71–80 (2013)
Tong, S.C., Wang, T., Li, Y.M.: Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics. IEEE Trans. Cyber. 44(6), 910–921 (2014)
Malysz, P., Sirouspour, S.: Nonlinear and filtered force/position mapping in bilateral teleoperation with application to enhanced stiffness discrimination. IEEE Trans. Robotics 25(5), 1134–1149 (2009)
Wang, M., Liu, X.P., Shi, P.: Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(6), 1681–1692 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, Y., Hua, C., Li, J. et al. Fixed-time Coordination Control for Bilateral Telerobotics System with Asymmetric Time-varying Delays. J Intell Robot Syst 86, 447–466 (2017). https://doi.org/10.1007/s10846-016-0454-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-016-0454-9