Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The HAMSTER Data Communication Architecture for Unmanned Aerial, Ground and Aquatic Systems

Aims, Scope and Definitions

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents HAMSTER, the HeAlthy, Mobility and Security based data communication archiTEctuRe. HAMSTER is designed for Unmanned Vehicles and addresses mainly three types of communications: machine-to-machine, machine-to-infrastructure and internal machine communications. It is divided into three main versions: Flying HAMSTER (for aerial systems), Running HAMSTER (for terrestrial systems) and Swimming HAMSTER (for aquatic systems). Every version of such architecture is also equipped with Sphere and Nimble. Sphere deals with Safety & Security aspects regarding communication, components “health” and modules authentication. Nimble is aimed at increasing the overall mobility in such scenarios, strongly actuating with inherent communications of each application field. This paper details every aspect of HAMSTER and presents, as a plus at the end, two case studies: the first one consists of an evaluation of five communications schemes for internal communications in airplanes; the second one is a cryptographic evaluation of two Elliptic Curve Cryptography algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abbott-Mccune, S., Kobezak, P., Tront, J., Marchany, R., Wicks, A.: UGV: Security analysis of subsystem control network. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 8741. Baltimore (2013)

  2. Alba, E., Talbi, E.g., Zomaya, A.Y., Mao, J., Wu, Z., Wu, X.: A TDMA scheduling scheme for many-to-one communications in wireless sensor networks. Comput. Commun. 30(4), 863–872 (2007)

    Article  Google Scholar 

  3. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography (2011)

  4. Bekmezci, I., Sahingoz, O.K., Temel, S.: Survey Flying Ad-Hoc Networks (FANETs): A survey. Ad Hoc Netw. 11(3), 1254–1270 (2013)

    Article  Google Scholar 

  5. Bouachir, O., Abrassart, A., Garcia, F., Larrieu, N.: A mobility model for UAV ad hoc network. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 383–388. IEEE (2014)

  6. Bovee, B., Nekoui, M., Pishro-Nik, H., Tessier, R.: Evaluation of the universal geocast scheme for VANETs. In: Vehicular Technology Conference (VTC Fall), 2011 IEEE, pp. 1–5 (2011)

  7. Branco, K.R.L.J.C., Pelizzoni, J.M., Neris, L.O., Trindade, O., Osorio, F.S., Wolf, D.F.: Tiriba - a new approach of UAV based on model driven development and multiprocessors. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1–4. IEEE (2011)

  8. Chung, H., Oh, S., Shim, D.H., Sastry, S.S.: Toward robotic sensor webs: Algorithms, systems, and experiments. Proc. IEEE 99(9), 1562–1586 (2011)

    Article  Google Scholar 

  9. Clapper, J., Young, J., Cartwright, J., Grimes, J.: Unmanned systems roadmap 2007–2032. Tech. rep., Department of Defense (2007)

  10. Eissa, T., Razal, S.A., Ngadi, M.A.: Enhancing MANET security using secret public keys. In: 2009 International Conference on Future Networks, pp. 130–134 (2009)

  11. Elgezabal Gomez, O.: Fly-by-wireless: Benefits, risks and technical challenges. In: CANEUS Fly by Wireless Workshop 2010, pp. 14–15. IEEE (2010)

  12. Faughnan, M.S., Hourican, B.J., MacDonald, G.C., Srivastava, M., Wright, J.A., Haimes, Y.Y., Andrijcic, E., Guo, Z., White, J.C.: Risk analysis of unmanned aerial vehicle hijacking and methods of its detection. In: Systems and Information Engineering Design Symposium (SIEDS), 2013 IEEE, pp. 145–150 (2013)

  13. Fernandes, L.C., Souza, J.R., Pessin, G., Shinzato, P.Y., Sales, D., Mendes, C., Prado, M., Klaser, R., Magalhães, A.C., Hata, A., Pigatto, D., Castelo Branco, K., Grassi, V., Osorio, F.S., Wolf, D.F.: CaRINA intelligent robotic car: Architectural design and applications. J. Syst. Archit. 60(4), 372–392 (2014)

    Article  Google Scholar 

  14. Frew, E., Brown, T.: Networking issues for small unmanned aircraft systems. J. Intell. Robot. Syst. Theory Appl. 54(1-3 SPEC. ISS.), 21–37 (2009)

    Article  Google Scholar 

  15. Hwang, J.N.: Wireless MediaNets: Application-driven next-generation wireless IP networks. Multimed. Syst. 17(4), 251–285 (2010)

    Article  Google Scholar 

  16. IEEE Standards Association: IEEE 802.15.4-2011 - IEEE standard for local and metropolitan area networks - Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) (2011)

  17. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling. Wiley Professional Computing, Wiley (1991)

  18. Javaid, A.Y., Sun, W., Devabhaktuni, V.K., Alam, M.: Cyber security threat analysis and modeling of an unmanned aerial vehicle system. In: 2012 IEEE Conference on Technologies for Homeland Security (HST), pp. 585–590 (2012)

  19. Jena, D., Jena, S.K.: A novel and efficient cryptosystem for large message encryption. Int. J. Inf. Commun. Techol. 3(1), 32–39 (2011)

    Google Scholar 

  20. Kashikar, M., Nimbhorkar, S.: Designing acknowledgement based MANET using public key cryptography. In: 2013 8th International Conference on Computer Science Education (ICCSE), pp. 228–233 (2013)

  21. Kikuchi, H., Nakazato, J.: Modint: A compact modular arithmetic java class library for cellular phones, and its application to secure electronic voting. Secur. Protect. Inf. Process. Syst., 177–192 (2004)

  22. Kim, S.W., Seo, S.W.: Cooperative unmanned autonomous vehicle control for spatially secure group communications. IEEE J. Selected Areas Commun. 30(5), 870–882 (2012)

    Article  MathSciNet  Google Scholar 

  23. Kuiper, E., Nadjm-Tehrani, S.: Mobility models for UAV group reconnaissance applications. In: ICWMC ’06. International Conference on Wireless and Mobile Communications, 2006, p. 33 (2006)

  24. Leipold, F., Tassetto, D., Bovelli, S.: Wireless in-Cabin Communication for Aircraft Infrastructure. Telecommunication Systems (2011)

  25. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. J. Crypt. 14, 255–293 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, P., Pan, M., Fang, Y.: Capacity bounds of three-dimensional wireless ad hoc networks. IEEE/ACM Trans. Netw. 20(4), 1304–1315 (2012)

    Article  Google Scholar 

  27. Liaw, H.T.: A secure electronic voting protocol for general elections. Comput. Secur. 23(2), 107–119 (2004)

    Article  Google Scholar 

  28. Luo, C., Ward, P., Cameron, S., Parr, G., McClean, S.: Communication provision for a team of remotely searching UAVs: A mobile relay approach. In: Globecom Workshops (GC Wkshps), 2012 IEEE, pp. 1544–1549 (2012)

  29. Maza, I., Caballero, F., Capitán, J., Martínez-De-Dios, J., Ollero, A.b.: Experimental results in multi-UAV coordination for disaster management and civil security applications. J. Intell. Robot. Syst. Theory Appl. 61(1–4), 563–585 (2011)

    Article  Google Scholar 

  30. Mifdaoui, A., Gayraud, T.: Fly-By-Wireless for next generation aircraft: Challenges and potential solutions. In: 2012 IFIP Wireless Days, pp. 1–8. IEEE (2012)

  31. NIC.br: IPv6.br — Portal sobre IPv6 do NIC.br (2013)

  32. Pigatto, D.F., Goncalves, L., Pinto, A.S.R., Roberto, G.F., Fernando Rodrigues Filho, J., Branco, K.R.L.J.C.: HAMSTER - Healthy, mobility and security-based data communication architecture for unmanned aircraft systems. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 52–63. IEEE (2014)

  33. Pigatto, D.F., Silva, N.B.F.D., Branco, K.R.L.J.C.: Performance evaluation and comparison of algorithms for elliptic curve cryptography with El-Gamal based on MIRACL and RELIC libraries. J. Appl. Comput. Res. 1(2), 95–103 (2012)

    Article  Google Scholar 

  34. Pigatto, D.F., Smith, J., Lucas, K.R., Branco, J.C.: Sphere: A novel platform for increasing safety & security on unmanned systems. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1059–1066. IEEE (2015)

  35. Pinto, A., Montez, C., Araújo, G., Vasques, F., Portugal, P.: An approach to implement data fusion techniques in wireless sensor networks using genetic machine learning algorithms. Inf. Fus. 15, 90–101 (2014)

    Article  Google Scholar 

  36. Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M., Rinner, B.: Networked UAVs as aerial sensor network for disaster management applications. e & i Elektrotechnik und Informationstechnik 127(3), 56–63 (2010)

    Article  Google Scholar 

  37. Raj, E., SelvaKumar, S., Lekha, J.R.: Node admission protocols for secure communications. In: 2011 International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT), pp. 69–73 (2011)

  38. Ramachandran, A., Zhou, Z., Huang, D.: Computing cryptographic algorithms in portable and embedded devices. In: IEEE International Conference on Portable Information Devices, 2007. PORTABLE07, pp. 1–7 (2007)

  39. Raol, J.R., Gopal, A.K.: Mobile Intelligent Autonomous Systems. Taylor & Francis (2012)

  40. Rawat, P., Singh, K.D., Chaouchi, H., Bonnin, J.M.: Wireless sensor networks: A survey on recent developments and potential synergies. J. Supercomput. (2013)

  41. Rieke, M., Foerster, T., Broering, A.: Unmanned aerial vehicles as mobile multi-sensor platforms. In: The 14th AGILE International Conference on Geographic Information Science. Utrecht (2011)

  42. Sahingoz, O.K.: Networking models in flying ad-hoc networks (FANETs): Concepts and challenges. J. Intell. Robot. Syst. 74(1–2), 513–527 (2013)

    Google Scholar 

  43. Sampigethaya, K., Poovendran, R.: Aviation cyberphysical systems: Foundations for future aircraft and air transport. Proc. IEEE 101(8), 1834–1855 (2013)

    Article  Google Scholar 

  44. Schoaba, V., Sikansi, F.E.G., Pigatto, D.F., Branco, K.R.L.J.C., Branco, L.C.: Digital signature for mobile devices: A new implementation and evaluation. Int. J. Futur. Gener. Commun. Netw. 4, 23–36 (2011)

    Google Scholar 

  45. Studor, G.: “Fly-by-Wireless”: A revolution in aerospace vehicle architecture for instrumentation and control (2007)

  46. Sun, Z., Wang, P., Vuran, M., Al-Rodhaan, M., Al-Dhelaan, A., Akyildiz, I.b.: BorderSense: Border patrol through advanced wireless sensor networks. Ad Hoc Netwo. 9(3), 468–477 (2011)

    Article  Google Scholar 

  47. Temel, S., Bekmezci, I.: On the performance of flying ad hoc networks (FANETs) utilizing near space high altitude platforms (HAPs). In: 2013 6th International Conference on Recent Advances in Space Technologies (RAST), pp. 461–465 (2013)

  48. Verma, A., Fernandes, R.: Persistent unmanned airborne network support for cooperative sensors. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 8756. Baltimore (2013)

  49. Wei, G., Ling, Y., Guo, B., Xiao, B., Vasilakos, A.V.: Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Comput. Commun. 34(6), 793–802 (2011)

    Article  Google Scholar 

  50. Xiang, X., Liu, C., Lapierre, L., Jouvencel, B.: Synchronized path following control of multiple homogenous underactuated AUVs. J. Syst. Sci. Complex. 25(1), 71–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yedavalli, R.K., Belapurkar, R.K.: Application of wireless sensor networks to aircraft control and health management systems. J. Control Theory Appl. 9(1), 28–33 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Fernando Pigatto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pigatto, D.F., Gonçalves, L., Roberto, G.F. et al. The HAMSTER Data Communication Architecture for Unmanned Aerial, Ground and Aquatic Systems. J Intell Robot Syst 84, 705–723 (2016). https://doi.org/10.1007/s10846-016-0356-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0356-x

Keywords

Navigation