Abstract
Compared to autonomous ground vehicles, UAVs (unmanned aerial vehicles) have significant mobility advantages and the potential to operate in otherwise unreachable locations. Micro UAVs still suffer from one major drawback: they do not have the necessary payload capabilities to support high performance arms. This paper, however, investigates the key challenges in controlling a mobile manipulating UAV using a commercially available aircraft and a light-weight prototype 3-arm manipulator. Because of the overall instability of rotorcraft, we use a motion capture system to build an efficient autopilot. Our results indicate that we can accurately model and control our prototype system given significant disturbances when both moving the manipulators and interacting with the ground.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bernard, M., Kondak, K.: Generic slung load transportation system using small size helicopters. In: Proc. IEEE Int. Conf. Robotics and Automation ICRA ’09, pp. 3258–3264 (2009)
Kuntz, N.R., Oh, P.Y.: Towards autonomous cargo deployment and retrieval by an unmanned aerial vehicle using visual servoing. ASME Conf. Proc. 2008(43260), 841–849 (2008)
Mellinger, D., Lindsey, Q., Shomin, M., Kumar, V.: Design, modeling, estimation and control for aerial grasping and manipulation. In: Proc. IEEE/RSJ Int Intelligent Robots and Systems (IROS) Conf, pp. 2668–2673 (2011)
Pounds, P.E.I., Bersak, D.R., Dollar, A.M.: Grasping from the air: hovering capture and load stability. In: Proc. IEEE Int Robotics and Automation (ICRA) Conf, pp. 2491–2498 (2011)
Korpela, C.M., Danko, T.W., Oh, P.Y.: MM-UAV: mobile manipulating unmanned aerial vehicle. J. Intell. Robot. Syst. 65(1–4), 93–101 (2012)
Korpela, C., Orsag, M., Danko, T., Kobe, B., McNeil, C., Pisch, R., Oh, P.: Flight satbility in aerial redundant manipulators. In: Proc. IEEE Int Robotics and Automation (ICRA) Conf. (2012)
Korpela, C.M., Danko, T.W., Oh, P.Y.: Designing a system for mobile manipulation from an unmanned aerial vehicle. In: Proc. IEEE Conf. Technologies for Practical Robot Applications (TePRA), pp. 109–114 (2011)
Aghili, F.: Optimal control of a space manipulator for detumbling of a target satellite. In: Proc. IEEE Int. Conf. Robotics and Automation ICRA ’09, pp. 3019–3024 (2009)
Dimitrov, D.N., Yoshida, K.: Momentum distribution in a space manipulator for facilitating the post-impact control. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS 2004), vol. 4, pp. 3345–3350 (2004)
Ishitsuka, M., Ishii, K.: Modularity development and control of an underwater manipulator for auv. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems IROS 2007, pp. 3648–3653 (2007)
Nenchev, D.N., Yoshida, K., Vichitkulsawat, P., Uchiyama, M.: Reaction null-space control of flexible structure mounted manipulator systems. IEEE Trans. Robot. Autom. 15(6), 1011–1023 (1999)
Hoffmann, G.M., Huang, H., Wasl, S.L., Tomlin, E.C.J.: Quadrotor helicopter flight dynamics and control: theory and experiment. In: Proc. of the AIAA Guidance, Navigation, and Control Conference (2007)
McMillan, S., Orin, D.E., McGhee, R.B.: Efficient dynamic simulation of an underwater vehicle with a robotic manipulator. IEEE Trans. Syst. Man Cybern. 25, 1194–1206 (1995)
Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control, 1st edn. Springer Publishing Company, Incorporated (2008)
Jazar, R.: Theory of Applied Robotics: Kinematics, Dynamics, and Control, 2nd edn. Springer, New York (2010).
Corke, P.: A robotics toolbox for MATLAB. IEEE Robot. Autom. Mag. 3(1), 24–32 (1996)
Craig, J.J.: Introduction to Robotics: Mechanics and Control. Addison-Wesley series in electrical and computer engineering: Control engineering. Addison-Wesley (1989)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Orsag, M., Korpela, C. & Oh, P. Modeling and Control of MM-UAV: Mobile Manipulating Unmanned Aerial Vehicle. J Intell Robot Syst 69, 227–240 (2013). https://doi.org/10.1007/s10846-012-9723-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-012-9723-4