Abstract
We develop a short-baseline vision system for a humanoid ping-pong robot. The vision system can provide four-dimensional space-time information and can predict the future trajectory of a ball. Short baseline poses special challenges for achieving sufficient 3-D reconstruction and prediction accuracy within limited processing time. We propose two algorithms including direct calibration of projection matrix and Gaussian-fitting based ball-center location to guarantee the 3-D reconstruction accuracy; we propose algorithm of five-point based ball representation and utilize the constraint of ball detecting region to guarantee the processing speed; we also propose algorithm of smoothing-based trajectory prediction to improve the prediction accuracy. Experimental results show the accuracy and the speed of our vision system can meet the requirements of a humanoid ping-pong robot.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Andersson, R.L.: Dynamic sensing in a ping-pong playing robot. IEEE Trans. Robot. Autom. 5(6), 728–739 (1989)
Matsushima, M., Hashimoto, T., Takeuchi, M., Miyazaki, F.: A learning approach to robotic table tennis. IEEE Trans. Robot. Autom. 21(4), 767–771 (2005)
Takeuchi, M., Miyazaki, F., Matsushima, M., Kawatani, M., Hashimoto, T.: Dynamic dexterity for the performance of ‘wall-bouncing’ tasks. IEEE Int. Conf. Robot. Autom. 2, 1559–1564 (2002)
Matsushima, M., Hashimoto, T., Miyazaki, F.: Learning to the robot table tennis task-ball control and rally with a human. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 2962–2969 (2003)
Muelling, K., Peters, J.: A computational model of human table tennis for robot application. In: Proceedings of Autonome Mobile Systeme, vol. 3, pp. 1309–1314 (2009)
Angel, L., Sebastian, J.M., Saltaren, R., Aracil, R., SanPedro, J.: RoboTenis: optimal design of a parallel robot with high performance. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Canada, pp. 2134–2139 (2005)
Angel, L., Traslosheros, A., Sebastian, J.M., Pari, L., Carelli, R., Roberti, F.: Vision-based control of the robotenis system. Lect. Notes Control Inf. Sci. 370, 229–240 (2009)
Brunnett, G., Rusdorf, S., Lorenz, M.: V-Pong: an immersive table tennis simulation. IEEE Comput. Graph. Appl. 26(4), 10–13 (2006)
Rusdorf, S., Brunnett, G., Lorenz, M., Winkler, T.: Real time interaction with a humanoid avatar in an immersive table tennis simulation. IEEE Trans. Vis. Comput. Graph. 13(1), 15–25 (2007)
Acosta, L., Rodrigo, J.J., Mendez, J.A., Marichal, G.N., Sigut, M.: Ping-pong-player prototype—a PC-based, low-cost ping-pong robot. IEEE Robot. Autom. Mag. 10(4), 44–52 (2003)
Zhang, Z., Xu, D.: Design of high-speed vision system and algorithms based on distributed parallel processing architecture for target tracking. In: Proceedings of the 7th Asian Control Conference, pp. 1638–1643 (2009)
Sabzevari, R., Shahri, A.: Object detection and localization system based on neural networks for robo-pong. In: Proceedings of the 5th International Symposium on Mechatronics and its Applications (2008)
Sorensen, V., Ingvaldsen, R.P., Whiting, H.T.: The application of co-ordination dynamics to the analysis of discrete movements using table tennis as a paradigm skill. Biol. Cybern. 85(1), 27–38 (2001)
Klarquist, W.N., Bovik, A.C.: Fovea: a foveated vergent active stereo vision system for dynamic three-dimensional scene recovery. IEEE Trans. Robot. Autom. 14(5), 755–770 (1998)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)
Harris, C., Sttephens, M.: A combined corner and edge detector. In: Proceeding of 4th Alvey Vision Conference, pp. 147–151 (1988)
Hartley, R.I.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 580–593 (1997)
Wong, P.K.C.: Developing an intelligent table tennis umpiring system: identifying the ball from the scene. In: Second Asia International Conference on Modelling & Simulation, pp. 445–450 (2008)
Chen, H., Chen, H.S., Lee, S.: Physics-based ball tracking in volleyball videos with its applications to set type recognition and action detection. In: IEEE International Conference on Pattern Recognition, vol. 1, pp. 1097–1100 (2007)
Zhang, P., Lu, T.: Real-time motion planning for a volleyball robot task based on a multi-agent technique. J. Intell. Robot. Syst. 49(4), 355–366 (2007)
Tong, X.F., Lu, H.Q., Liu, Q.S.: An effective and fast soccerball detection and tracking method. In: Proc. IEEE Int. Conf. Pattern Recognit., Cambridge, U.K., vol. 4, pp. 795–798 (2004)
Yamada, A., Shirai, Y., Miura, J.: Tracking players and a ball in video image sequence and estimating camera parameters for 3-D interpretation of soccer games. In: Proc. IEEE Int. Conf. Pattern Recognit., Québec, QC, Canada, vol. 1, pp. 303–306 (2002)
Mouhamed, M., Toker, O., Harthy, A.: A 3-D vision-based man–machine interface for hand-controlled telerobot. IEEE Trans. Ind. Electron. 52(1), 306–319 (2005)
Miyazaki, F., Matsushima, M., Takeuchi, M.: Learning to dynamically manipulate: a table tennis robot controls a ball and rallies with a human being. In: Advances in Robot Control, pp. 317–341. Springer (2005)
Smith, C., Bratt, M., Christensen, H.I.: Teleoperation for a ball-catching task with significant dynamics. Neural Netw. 24, 604–620 (2008) (Special Issue on Robotics and Neuroscience)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tian, JD., Sun, J. & Tang, YD. Short-Baseline Binocular Vision System for a Humanoid Ping-Pong Robot. J Intell Robot Syst 64, 543–560 (2011). https://doi.org/10.1007/s10846-011-9554-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-011-9554-8