Abstract
This paper presents an adaptive polar-space motion controller for trajectory tracking and stabilization of a three-wheeled, embedded omnidirectional mobile robot with parameter variations and uncertainties caused by friction, slip and payloads. With the derived dynamic model in polar coordinates, an adaptive motion controller is synthesized via the adaptive backstepping approach. This proposed polar-space robust adaptive motion controller was implemented into an embedded processor using a field-programmable gate array (FPGA) chip. Furthermore, the embedded adaptive motion controller works with a reusable user IP (Intellectual Property) core library and an embedded real-time operating system (RTOS) in the same chip to steer the mobile robot to track the desired trajectory by using hardware/software co-design technique and SoPC (system-on-a-programmable-chip) technology. Simulation results are conducted to show the merit of the proposed polar-space control method in comparison with a conventional proportional-integral (PI) feedback controller and a non-adaptive polar-space kinematic controller. Finally, the effectiveness and performance of the proposed embedded adaptive motion controller are exemplified by conducting several experiments on steering an embedded omnidirectional mobile robot.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wu, C.J., Tsai, C.C.: Localization of an autonomous mobile robot based on ultrasonic sensory information. J. Intell. Robot. Syst. 30, 267–277 (2001)
Jiang, Z.P., Nijmeijer, H.: A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Trans. Automat. Contr. 44, 265–279 (1999)
Dixon, W.E., Dawson, D.M., Zergeroglu, E., Zhang, F.: Robust tracking and regulation control for mobile robots. Int. J. Robust Nonlinear Control 10, 199–216 (2000)
Lee, T.C., Song, K.T., Lee, C.H., Teng, C.C.: Tracking control of unicycle-modeled mobile robots using a saturation feedback controller. IEEE Trans. Control Syst. Technol. 9, 305–318 (2001)
Li, T.H., Chang, S.J.: Autonomous fuzzy parking control of a car-like mobile robot. IEEE Trans. Syst. Man Cybern. Syst. Hum. 33(4), 451–465 (2003)
Pin, F.G., Killough, S.M.: A new family of omnidirectional and holonomic wheeled platforms for mobile robots. IEEE Trans. Automat. Contr. 10(4), 480–489 (1994)
Watanabe, K., Shiraishi, Y., Tzafestas, S., Tang, J., Fukuda, T.: Feedback control of an omnidirectional autonomous platform for mobile service robots. J. Intell. Robot. Syst. 22, 315–330 (1998)
Kalmár-Nagy, T., D’Andrea, R., Ganguly, P.: Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle. Robot. Auton. Syst. 46, 47–64 (2004)
Williams, R.L. II, Carter, B.E., Gallina, P., Rosati, G.: Dynamic model with slip for wheeled omnidirectional robots. IEEE Trans. Automat. Contr. 18(3), 285–293 (2002)
Huang, H.C., Tsai, C.C.: FPGA implementation of an embedded robust adaptive controller for autonomous omnidirectional mobile platform. IEEE Trans. Ind. Electron. 56(5), 1604–1616 (2009)
Park, K., Chung, H., Lee, J.G.: Point stabilization of mobile robots via state-space exact feedback linearization. Robot. Comput.-Integr. Manuf. 16(5), 353–363 (2000)
Yang, J.M., Kim, J.H.: Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans. Automat. Contr. 15(3), 578–587 (1999)
Chwa, D.K.: Sliding mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Trans. Control Syst. Technol. 12(4), 637–644 (2004)
Huang, H.C., Tsai, C.C.: Simultaneous tracking and stabilization of an omnidirectional mobile robot in polar coordinates: a unified control approach. Robotica 27(3), 447–458 (2009)
Huang, H.C., Tsai, C.C.: Adaptive robust control of an omnidirectional mobile platform for autonomous service robots in polar coordinates. J. Intell. Robot. Syst. 51(4), 439–460 (2008)
Campo, I., Echanobe, J., Bosque, G., Tarela, J.M.: Efficient hardware/software implementation of an adaptive neuro-fuzzy system. IEEE Trans. Fuzzy Syst. 16(3), 761–778 (2008)
Kung, Y.S., Tsai, M.H.: FPGA-based speed control IC for PMSM drive with adaptive fuzzy control. IEEE Trans. Power Electron. 22(6), 2476–2486 (2007)
Solano, S.S., Cabrera, A.J., Baturone, I., Moreno-Velo, F.J., Brox, M.: FPGA implementation of embedded fuzzy controllers for robotic applications. IEEE Trans. Ind. Electron. 54(4), 1937–1945 (2007)
Huang, S.J., Wu, S.S.: Vision-based robotic motion control for non-autonomous environment. J. Intell. Robot. Syst. 54(5), 733–754 (2009)
Han, S.H., Lee, M.H., Mohler, R.R.: Real-time implementation of a robust adaptive controller for a robotic manipulator based on digital signal processors. IEEE Trans. Syst. Man Cybern. Syst. Hum. 29(2), 194–204 (1999)
Li, T.H., Chang, S.J., Chen, Y.X.: Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot. IEEE Trans. Ind. Electron. 50(5), 867–880 (2003)
Deliparaschos, K.M., Nenedakis, F.I., Tzafestas, S.G.: Design and implementation of a fast digital fuzzy logic controller using FPGA technology. J. Intell. Robot. Syst. 45(1), 77–96 (2006)
Juang, C.F., Chen, J.S.: Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation. IEEE Trans. Ind. Electron. 53(3), 941–949 (2006)
Newman, K.E., Hamblen, J.O., Hall, T.S.: An introductory digital design course using a low-cost autonomous robot. IEEE Trans. Ed. 45(3), 289–296 (2002)
Fife, W.S., Archibald, J.K.: Reconfigurable on-board vision processing for small autonomous vehicles. EURASIP Journal on Embedded Systems 2007, 1–14 (2007)
Esmaeilzadeh, H., Farzan, F., Shahidi, N., Fakhraie, S.M., Lucas, C., Tehranipoor, M.: NnSP: embedded neural networks stream processor. In: 48th Midwest Symposium on Circuits and Systems 1, 223–226 (2005)
Kuo, C.H., Chen, C.Y.: Development of vision guided small size humanoid soccer robot using chip based controllers. In: Proceedings of the International Automatic Control Conference, pp. 854–859 (2007)
Krstic, M., Kanellakopoulos, L., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)
Kung, Y.S., Shu, G.S.: Design and implementation of a control IC for vertical articulated robot arm using SOPC technology. In: Proceedings of the IEEE International Conference on Mechatronics, pp. 532–536 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, HC., Tsai, CC. & Lin, SC. Adaptive Polar-Space Motion Control for Embedded Omnidirectional Mobile Robots with Parameter Variations and Uncertainties. J Intell Robot Syst 62, 81–102 (2011). https://doi.org/10.1007/s10846-010-9438-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-010-9438-3