Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Automated surface defect detection framework using machine vision and convolutional neural networks

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Machine vision-based inspection technologies are gaining considerable importance for automated monitoring and quality control of manufactured products in recent years due to the advent of Industry 4.0. The involvement of advanced deep learning methods is a significant factor contributing to the advent of robust vision-based solutions for improving inspection accuracy at a significantly lower cost in manufacturing industries. The requirement of computational resources and large training datasets hinders the deployment of these solutions to manufacturing shop floors. The present research work develops an image-based framework considering pre-trained Convolutional Neural Network (CNN), ResNet-101 to detect surface defects with the minimum training datasets and computational requirements. The outcomes of the proposed framework are substantiated through a case study of detecting commonly observed surface defects during the centerless grinding of tapered rollers. The image datasets consisting of standard tapered rollers and three common defect classes are captured and enriched further with the help of the data augmentation technique. The present work employs ResNet-101 for feature extraction combined with and multi-class Support Vector Machine (SVM) as a classifier to detect defective images. The effects of the feature extraction layer (fc1000) and pooling layer (pool5) activation are explored to achieve the desired prediction abilities. The testing trials demonstrate that the proposed framework effectively performs image classification, achieving 100% precision for the ‘Good’ class components. The study showed that the proposed approach could overcome the requirements of large training datasets and higher computational power for deep learning models. The proposed system can be of significant importance for Micro, Small, and Medium Enterprises (MSMEs) and Small and Medium-sized Enterprises (SMEs) as an alternative to conventional labor-intensive manual inspection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Acknowledgements

The authors wish to acknowledge the support of M/s. Kansara Modler Limited, Jodhpur, for providing tapered rollers for the generation of the labeled image dataset. The authors would also like to thank the Ministry of Education (MoE), India, for providing financial support to carry out this research work through the Prime Ministers Research Fellowship (PMRF) Scheme (Ref: PMRF/192002/488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Desai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.A., Desai, K.A. Automated surface defect detection framework using machine vision and convolutional neural networks. J Intell Manuf 34, 1995–2011 (2023). https://doi.org/10.1007/s10845-021-01878-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-021-01878-w

Keywords

Navigation