Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

An electric forklift routing problem with battery charging and energy penalty constraints

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Concerns about environmental degradation and fossil fuel depletion have led to the advent of energy-aware manufacturing and material handling processes in factories and warehouses. However, as the transition to eco-friendly material handling by electric material handling vehicles (EMV) is progressing, the use of electric forklifts (EFs) remains a challenge, as these EMVs are recognized only as energy consumers. In this paper, we develop an integrated dynamic algorithm for solving the EF routing problem with battery charging constraints in which EFs’ picking or put-away routes, EFs’ battery charging schedules, and the number of EFs operated are simultaneously determined while considering electricity consumption in a warehouse. Time series of electricity-usage penalty estimated by predicted energy consumption in a warehouse facility and equipment level play key roles in establishing EF battery charging schedules. Dynamic models for the arrival processes in material handling and EF battery charging jobs in multiple EF queues are developed and implemented as core engines in the proposed dynamic control algorithm. Operational performance and energy performance of the proposed dynamic algorithm are examined using real energy and operational parameters of the Toyota 9BRU23/16.5 reach truck and compared to those of the metaheuristic approach, called adaptive large neighborhood search. Experimental results of large-size instances with uniformly distributed job locations show that an average 5.6% better performance is achieved by the proposed dynamic algorithm. An additional experiment with the proposed approach and clustered job locations results in 8.9% lower energy-related costs and 1.2% shorter EF travel distances, demonstrating the competitiveness of the proposed energy-aware EF operations strategy for warehouse administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  • Basso, F., Epstein, L. D., Pezoa, R., & Varas, M. (2019). An optimization approach and a heuristic procedure to schedule battery charging processes for stackers of palletized cargo. Computers and Industrial Engineering, 133, 9–18.

    Article  Google Scholar 

  • Boenzi, F., Digiesi, S., Facchini, F., Mossa, G., & Mummolo, G. (2017). A nonlinear integer programming model for warehousing sustainable logistics. Engineering systems and networks (pp. 99–107). Springer.

  • Burinskiene, A. (2015). Optimising forklift activities in wide-aisle reference warehouse. International Journal of Simulation Modelling, 14(4), 621–632.

    Article  Google Scholar 

  • Confessore, G., Fabiano, M., & Liotta, G. (2013). A network flow based heuristic approach for optimising AGV movements. Journal of Intelligent Manufacturing, 24(2), 405–419.

    Article  Google Scholar 

  • Demir, E., Bektaş, T., & Laporte, G. (2012). An adaptive large neighborhood search heuristic for the pollution-routing problem. European Journal of Operational Research, 223(2), 346–359.

    Article  Google Scholar 

  • El Hachemi, N., Saddoune, M., El Hallaoui, I., & Rousseau, L. M. (2018). A two-phase approach to solve the synchronized bin–forklift scheduling problem. Journal of Intelligent Manufacturing, 29(3), 651–657.

    Article  Google Scholar 

  • Estanjini, R. M., Lin, Y., Li, K., Guo, D., & Paschalidis, I. C. (2011). Optimizing warehouse forklift dispatching using a sensor network and stochastic learning. IEEE Transactions on Industrial Informatics, 7(3), 476–486.

    Article  Google Scholar 

  • Flood, M. M. (1956). The traveling-salesman problem. Operations Research, 4(1), 61–75.

    Article  Google Scholar 

  • Graham, R. L. (1972). An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters, 1, 132–133.

    Article  Google Scholar 

  • Kabir, Q. S., & Suzuki, Y. (2019). Comparative analysis of different routing heuristics for the battery management of automated guided vehicles. International Journal of Production Research, 57(2), 624–641.

    Article  Google Scholar 

  • Li, Z., Barenji, A. V., Jiang, J., Zhong, R. Y., & Xu, G. (2020). A mechanism for scheduling multi robot intelligent warehouse system face with dynamic demand. Journal of Intelligent Manufacturing, 31(2), 469–480.

    Article  Google Scholar 

  • Liang, J., Wu, Z., Zhu, C., & Zhang, Z. H. (2020). An estimation distribution algorithm for wave-picking warehouse management. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01688-6.

    Article  Google Scholar 

  • Navigant Consulting, Inc. (2016). Retrieved May 16, 2019, from https://www.navigantresearch.com/news-and-views/sales-of-advanced-electric-forklifts-in-north-america-are-expected-to-exceed-47000-by-2025

  • Poon, T. C., Choy, K. L., Chow, H. K., Lau, H. C., Chan, F. T., & Ho, K. C. (2009). A RFID case-based logistics resource management system for managing order-picking operations in warehouses. Expert Systems with Applications, 36(4), 8277–8301.

    Article  Google Scholar 

  • Prabhu, V. V., & Duffie, N. A. (1999). Nonlinear dynamics in distributed arrival time control of heterarchical manufacturing systems. IEEE Transactions on Control Systems Technology, 7(6), 724–730.

    Article  Google Scholar 

  • Qiu, L., Wang, J., Chen, W., & Wang, H. (2015). Heterogeneous AGV routing problem considering energy consumption. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 1894–1899). IEEE.

  • R Rahman, S. M. M. (2019). Forklift routing optimization in a warehouse using a clustering-based approach (Doctoral dissertation, Concordia University).

  • Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Science, 40(4), 455–472.

    Article  Google Scholar 

  • Rushton, A., Croucher, P., & Baker, P. (2014). The handbook of logistics and distribution management understanding the supply chain. . Kogan Page Publishers.

    Google Scholar 

  • Shah, B., & Khanzode, V. (2017). A comprehensive review of warehouse operational issues. International Journal of Logistics Systems and Management, 26(3), 346–378.

    Article  Google Scholar 

  • Taljanovic, K., & Salihbegovic, A. (2009). A new strategies in picking from the forward pick locations. In 2009 XXII International Symposium on Information, Communication and Automation Technologies (pp. 1–7). IEEE.

  • Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facilities planning. . Wiley.

    Google Scholar 

  • Vivaldini, K. C., Galdames, J. P., Pasqual, T. B., Becker, M., & Caurin, G. A. (2011). Intelligent Warehouses: Focus on the automatic routing and path planning of robotic forklifts able to work autonomously. Intelligent Transportation Vehicles, 1, 115.

    Google Scholar 

  • Vivaldini, K. C. T., Galdames, J. P. M., Pasqual, T. B., Sobral, R. M., Araújo, R. C., Becker, M., & Caurin, G. (2010). Automatic routing system for intelligent warehouses. In IEEE International Conference on Robotics and Automation 1 pp.1–6.

  • Vonolfen, S., Kofler, M., Beham, A., Affenzeller, M., & Achleitner, W. (2012). Optimizing assembly line supply by integrating warehouse picking and forklift routing using simulation. In Proceedings of the 2012 Winter Simulation Conference (WSC) (pp. 1–12). IEEE.

  • Zhou, B. H., & Shen, C. Y. (2018). Multi-objective optimization of material delivery for mixed model assembly lines with energy consideration. Journal of Cleaner Production, 192, 293–305.

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by Toyota Material Handling North America (TMHNA), University Research Program, 2018 (award ID: AWD-003869).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seokgi Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Jeon, H.W., Issabakhsh, M. et al. An electric forklift routing problem with battery charging and energy penalty constraints. J Intell Manuf 33, 1761–1777 (2022). https://doi.org/10.1007/s10845-021-01763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-021-01763-6

Keywords

Navigation