Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Data-informed inverse design by product usage information: a review, framework and outlook

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

A significant body of knowledge exists on inverse problems and extensive research has been conducted on data-driven design in the past decade. This paper provides a comprehensive review of the state-of-the-art methods and practice reported in the literature dealing with many different aspects of data-informed inverse design. By reviewing the origins and common practice of inverse problems in engineering design, the paper presents a closed-loop decision framework of product usage data-informed inverse design. Specifically reviewed areas of focus include data-informed inverse requirement analysis by user generated content, data-informed inverse conceptual design for product innovation, data-informed inverse embodiment design for product families and product platforming, data-informed inverse analysis and optimization in detailed design, along with prevailing techniques for product usage data collection and analytics. The paper also discusses the challenges of data-informed inverse design and the prospects for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adagha, O., Levy, R. M., & Carpendale, S. (2017). Towards a product design assessment of visual analytics in decision support applications: A systematic review. Journal of Intelligent Manufacturing,28(7), 1623–1633.

    Google Scholar 

  • Agard, B., & Kusiak, A. (2004). Data-mining-based methodology for the design of product families. International Journal of Production Research,42(15), 2955–2969.

    Google Scholar 

  • Alam, M. H., & Lee, S. K. (2012). Semantic aspect discovery for online reviews. In ICDM’12 (pp. 816–821). Belgium: Brussels.

  • Apte, C, Weiss, S., Grout, G., & Gordon Grout, W. (1999).Predicting defects in disk drive manufacturing: A case study in high-dimensional classification. In Proceedings of 9th IEEE conference on artificial intelligence for applications (pp. 212–218).

  • Arrighi, P. A., Le Masson, P., & Weil, B. (2015). Addressing constraints creatively: how new design software helps solve the dilemma of originality and feasibility. Creativity and Innovation Management,24(2), 247–260.

    Google Scholar 

  • Arrighi, P. A., & Mougenot, C. (2019). Towards user empowerment in product design a mixed reality tool for interactive virtual prototyping. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-016-1276-0.

    Article  Google Scholar 

  • Asuaje, M., Bakir, F., Kouidri, S., & Rey, R. (2004). Inverse design method for centrifugal impellers and comparison with numerical simulation tools. International Journal of Computational Fluid Dynamics,18(2), 101–110.

    Google Scholar 

  • Aswani, A., Shen, Z.-J. M., & Siddiq, A. (2019). Inverse optimization with noisy data. Operations Research,66(3), 870–892.

    Google Scholar 

  • Banks, H. T., & Bihari, K. L. (2001). Modelling and estimating uncertainty in parameter estimation. Inverse Problems,17(1), 95.

    Google Scholar 

  • Bayazit, N. (2004). Investigating design: A review of forty years of design research, Massachusetts Institute of Technology. Design Issues,20(1), 16–29.

    Google Scholar 

  • Bertsimas, D., Gupta, V., & Paschalidis, I. C. (2015). Data-driven estimation in equilibrium using inverse optimization. Mathematical Programming,153(2), 595–633.

    Google Scholar 

  • Bhagat, S., Goyal, A., & Lakshmanan, L. V. S. (2012). Maximizing product adoption in social networks. In Proceedings of the fifth ACM international conference on web search and data mining (pp. 603–612), ACM, Seattle, Washington.

  • Bonaiuti, D., & Zangeneh, M. (2009). On the coupling of inverse design and optimization techniques for the multiobjective, multipoint design of turbomachinery blades. Journal of Turbomachinery,131(2), 021014.

    Google Scholar 

  • Borges, J. E. (1990). A three-dimensional inverse method for turbomachinery: Part 1—Theory. ASME Journal of Turbomachinery,11, 346–354.

    Google Scholar 

  • Boschetti, F. (2005). Dimensionality reduction and visualization of geoscientific images via locally linear embedding. Computers & Geosciences,31(6), 689–697.

    Google Scholar 

  • Carlson, J., & Murphy, R. R. (2003). Reliability analysis of mobile robots. In IEEE international conference on robotics and automation (pp. 274–281), Taipei, Taiwan.

  • Cataldi, M., Ballatore, A., Tiddi, I., & Aufaure, M. A. (2013). Good location, terrible food: Detecting feature sentiment in user-generated reviews. Social Network Analysis and Mining,3(4), 1149–1163.

    Google Scholar 

  • Chattopadhyay, P., Mondal, S., Bhattacharya, C., Mukhopadhyay, A., & Ray, A. (2017). Dynamic data-driven design of lean premixed combustors for thermoacoustically stable operations. ASME Journal of Mechanical Design,139(11), 111419.

    Google Scholar 

  • Chen, M.-C. (2010). Configuration of cellular manufacturing systems using association rule induction. International Journal of Production Research,41(2), 381–395.

    Google Scholar 

  • Chen, W., Hoyle, C., & Wassenaar, H. (2013). A choice modeling approach for usage context-based design, decision-based design (pp. 255–285). London: Springer.

    Google Scholar 

  • Chen, L. H., & Ko, W. C. (2009). Fuzzy linear programming models for new product design using QFD with FMEA. Applied Mathematical Modelling,33(2), 633–647.

    Google Scholar 

  • Chen, L., & Qi, L. (2011). Social opinion mining for supporting buyers’ complex decision making: Exploratory user study and algorithm comparison. Social Network Analysis and Mining,1(4), 301–320.

    Google Scholar 

  • Chen, V. C. P., Tsui, K.-L., Barton, R. R., & Meckesheimer, M. (2006). A review on design, modeling and applications of computer experiments. IIE Transactions,38(4), 273–291.

    Google Scholar 

  • Cheng, J.-W., Chao, T., Chang, L., & Huang, B. (2004). A model-based virtual sensing approach for the injection molding process. Polymer Engineering & Science,44(9), 1605–1614.

    Google Scholar 

  • Chien, C.-F., Kerh, R., Lin, K.-Y., & Yu, A. P.-I. (2016). Data-driven innovation to capture user-experience product design: An empirical study for notebook visual aesthetics design. Computers & Industrial Engineering,99, 162–173.

    Google Scholar 

  • Chock, J. M. K., & Kapania, R. K. (2003). Load updating for finite element models. AIAA Journal.,41(9), 1667–1673.

    Google Scholar 

  • CID. (2014). Center for inverse design. http://www.centerforinversedesign.org/. Accessed 16 May 2018.

  • Colaço, M. J., & Orlande, H. R. B. (2009). Special issue on inverse problems, design and optimization (IPDO 2007) symposium. Inverse Problems in Science and Engineering,17(1), 1.

    Google Scholar 

  • Dambrosio, L., Pascazio, G., & Semeraro, S. (2008). Aerodynamic inverse design using fuzzy logic. Inverse Problems in Science and Engineering,16(2), 249–268.

    Google Scholar 

  • Daun, K. J., Howell, J. R., & Morton, D. P. (2003). Design of radiant enclosures using inverse and non-linear programming techniques. Inverse Problems in Engineering,11(6), 541–560.

    Google Scholar 

  • Dave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In Proceedings of the 12th international conference on world wide web. ACM: Budapest, Hungary.

  • Demeulenaere, A., & Braembussche, R. (1998). Three-dimensional inverse method for turbomachinery blading design. Journal of Turbomachinery,120(2), 247.

    Google Scholar 

  • Dering, M. L., & Tucker, C. S. (2017). A convolutional neural network model for predicting a product’s function, given its form. ASME Journal of Mechanical Design,139(11), 111408.

    Google Scholar 

  • Di Barba, P., Dolezel, I., Karban, P., Kus, P., Mach, F., Mognaschi, M. E., et al. (2014). Multiphysics field analysis and multiobjective design optimization: A benchmark problem. Inverse Problems in Science and Engineering,22(7), 1214–1225.

    Google Scholar 

  • Ding, X., & Liu, B. (2007). The utility of linguistic rules in opinion mining. In SIGIR’07, Amsterdam, The Netherlands.

  • Du, Y., Yu, Z., Yang, B., & Wang, Y. (2019). Modeling and simulation of time and value throughputs of data-aware workflow processes. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1394-y.

    Article  Google Scholar 

  • Egorov, I. N., Kretinin, G. V., Leshchenko, I. A., & Kuptzov, S. V. (2007). Multi-objective approach for robust design optimization problems. Inverse Problems in Science and Engineering,15(1), 47–59.

    Google Scholar 

  • Esfahani, P. M., Shafieezadeh-Abadeh, S., Hanasusanto, G. A., & Kuhn, D. (2018). Data-driven inverse optimization with incomplete information. Mathematical Programming,167(1), 191–234.

    Google Scholar 

  • Fainekos, E. G., & Giannakoglou, K. C. (2003). Inverse design of airfoils based on a novel formulation of the ant colony optimization method. Inverse Problems in Engineering,11(1), 21–38.

    Google Scholar 

  • Fang, X., Hu, P. J.-H., Li, Z., & Tsai, W. (2013). Predicting adoption probabilities in social networks. Information Systems Research,24(1), 128–145.

    Google Scholar 

  • Fang, K.-T., Li, R., & Sudjianto, A. (2005). Design and modeling for computer experiments. Computer science & data analysis series. Boca Raton: Chapman and Hall/CRC. ISBN 9781584885467.

  • Fernández-Martínez, J. L., Mukerji, T., Gonzalo, E., & Fernández-Muñiz, Z. (2011). Uncertainty assessment for inverse problems in high dimensional spaces using particle swarm optimization and model reduction techniques. Mathematical and Computer Modelling,54, 2889–2899.

    Google Scholar 

  • Ferrise, F., Graziosi, S., & Bordegoni, M. (2017). Prototyping strategies for multisensory product experience engineering. Journal of Intelligent Manufacturing,28(7), 1695–1707.

    Google Scholar 

  • Gargama, H., & Chaturvedi, S. K. (2011). Criticality assessment models for failure mode effects and criticality analysis using fuzzy logic. IEEE Transactions on Reliability,60(1), 102–110.

    Google Scholar 

  • Gavrus, A., Massoni, E., & Chenot, J. L. (1996). An inverse analysis using a finite element model for identification of rheological parameters. Journal of Materials Processing Technology,60(1–4), 447–454.

    Google Scholar 

  • Gelin, J. C., & Ghouati, O. (1994). An inverse method for determining viscoplastic properties of aluminium alloys. Journal of Materials Processing Technology,45(1–4), 435–440.

    Google Scholar 

  • Gengembre, E., Ladevie, B., Fudym, O., & Thuillier, A. (2012). A Kriging constrained efficient global optimization approach applied to low-energy building design problems. Inverse Problems in Science and Engineering,20(7), 1101–1114.

    Google Scholar 

  • Ghosh, D. D., Olewnik, A., & Lewis, K. (2016). Product “in-use” context identification using feature learning methods. In ASME international design engineering technical conferences and computers and information in engineering conference, Volume 1B: V01BT02A020, DETC2016-59645.

  • Ghosh, D., Olewnik, A., & Lewis, K. (2017). Application of feature-learning methods toward product usage context identification and comfort prediction. Journal of Computing and Information Science in Engineering,18(1), 011004.

    Google Scholar 

  • Giannakoglou, K. C., Giotis, A., & Karakasis, M. K. (2001). Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters. Inverse Problems in Engineering,9(4), 389–412.

    Google Scholar 

  • Giassi, A., Pediroda, V., Poloni, C., & Clarich, A. (2003). Three-dimensional inverse design of axial compressor stator blade using neural-networks and direct Navier–Stokes solver. Inverse Problems in Engineering,11(6), 457–470.

    Google Scholar 

  • Giess, M. D., Culley, S. J., & Shepherd, A. (2002). Informing design using data mining methods. In ASME international design engineering technical conferences and computers and information in engineering conference (pp. 207–215), Montreal, Canada.

  • Goto, A., Nohmi, M., & Sakurai, T. (2002). Hydrodynamic design system for pumps based on 3-D CAD, CFD, and inverse design method. Journal of Fluids Engineering-Transactions of the ASME,124(2), 329–335.

    Google Scholar 

  • Goto, A., & Zangeneh, M. (2002). Hydrodynamic design of pump diffuser using inverse design method and CFD. Journal of Fluids Engineering-Transactions of the ASME,124(2), 319–329.

    Google Scholar 

  • Green, M. G., Palani, R. P. K., & Wood, K. L. (2004). Product usage context: improving customer needs gathering and design target setting. In ASME design engineering technical conference, DETC/DTM2004-57498.

  • Green, M. G., Tan, J., Linsey, J. S., Seepersad, C. C., & Wood, K. L. (2005). Effects of product usage context on consumer product preferences. In ASME IDETC/CIE conference, DETC2005-85438.

  • Guimarães, F. G., & Ramírez, J. A. (2006). Improving the design of clustered neural fuzzy models for optimization. Inverse Problems in Science and Engineering,14(6), 609–621.

    Google Scholar 

  • Gupta, R. K., Belkadi, F., Buergy, C., Bitte, F., Da Cunha, C., Buergin, J., et al. (2018). Gathering, evaluating and managing customers’ feedback during aircraft production. Computers & Industrial Engineering,115, 559–572.

    Google Scholar 

  • Gusel, L., & Brezocnik, M. (2006). Modeling of impact toughness of cold formed material by genetic programming. Computational Materials Science,37(4), 476–482.

    Google Scholar 

  • Hacioglu, A., & Ozkol, I. (2005). Inverse airfoil design by an accelerated genetic algorithm via distribution strategies. Inverse Problems in Science and Engineering,13(6), 563–579.

    Google Scholar 

  • Harutunian, V., Morales, J. C., & Howell, J. R. (1995). Radiation exchange within an enclosure of diffusegray surfaces: the inverse problem. In Proceedings of the ASME/AIChE national heat transfer conference, Portland, Oregon.

  • Hashash, Y. M. A., Song, H., Jung, S., & Ghaboussi, J. (2009). Extracting inelastic metal behaviour through inverse analysis: a shift in focus from material models to material behavior. Inverse Problems in Science and Engineering,17(1), 35–50.

    Google Scholar 

  • He, L., Chen, W., & Conzelmann, G. (2012a). Impact of vehicle usage on consumer choice of hybrid electric vehicles. Transportation Research Part D: Transport and Environment,17(3), 208–214.

    Google Scholar 

  • He, L., Chen, W., Hoyle, C., & Yannou, B. (2012b). Choice Modeling for usage context-based design. ASME Journal of Mechanical Design,134(3), 031007-1.

    Google Scholar 

  • He, L., & Shan, P. (2012). Three-dimensional aerodynamic optimization for axial-flow compressors based on the inverse design and the aerodynamic parameters. Journal of Turbomachinery - Transactions of the ASME,134(3), 031004.

    Google Scholar 

  • He, L., Wang, M., Chen, W., & Conzelmann, G. (2014). Incorporating social impact on new product adoption in choice modeling: A case study in green vehicles. Transportation Research Part D: Transport and Environment,32, 421–434.

    Google Scholar 

  • Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. In KDD’04 (pp. 168–177), Seattle, WA.

  • Hu, X., & Wu, B. (2009). Classification and summarization of pros and cons for customer reviews (pp. 73–76), Milano, Italy.

  • Huang, C. C., Liang, W. Y., & Yi, S. R. (2017). Cloud-based design for disassembly to create environmentally friendly products. Journal of Intelligent Manufacturing,28(5), 1203–1218.

    Google Scholar 

  • Hyman, P. (2012). Researchers struggle to measure Big Data’s impact. ACM Communications, November 13.

  • Hyun, K. H., Lee, J. H., & Kim, M. (2017). The gap between design intent and user response identifying typical and novel car design elements among car brands for evaluating visual significance. Journal of Intelligent Manufacturing,28(7), 1729–1741.

    Google Scholar 

  • Igba, J., Alemzadeh, K., Gibbons, P. M., & Henningsen, K. (2015a). A framework for optimising product performance through feedback and reuse of in-service experience. Robotics and Computer-Integrated Manufacturing,36, 2–12.

    Google Scholar 

  • Igba, J., Alemzadeh, K., & Henningsen, K. (2015b). Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends. Renewable and Sustainable Energy Reviews,50(October), 144–159.

    Google Scholar 

  • Igusa, T., Liu, H., Schafer, B., & Naiman, D. Q. (2003). Bayesian classification trees and clustering for rapid generation and selection of design alternatives. In Proceedings of NSF design, service and manufacturing grantees and research conference, Birmingham, AL.

  • Isermann, R. (2005). Model-based fault-detection and diagnosis-status and applications. Annual Reviews in Control,29(1), 71–85.

    Google Scholar 

  • Issa, H., Ostrosi, E., Lenczner, M., & Habib, R. (2017). Fuzzy holons for intelligent multi-scale design in cloud-based design for configurations. Journal of Intelligent Manufacturing,28(5), 1219–1247.

    Google Scholar 

  • Jagtap, S., & Johnson, A. (2011). In-service information required by engineering designers. Research in Engineering Design,22(4), 207–221.

    Google Scholar 

  • Jahangirian, A., & Shahrokhi, A. (2009). Inverse design of transonic airfoils using genetic algorithm and a new parametric shape method. Inverse Problems in Science and Engineering,17(5), 681–699.

    Google Scholar 

  • Jeong, S., Obayashi, S., & Nakahashi, K. (1999). Inverse optimization of supersonic wing design with twist specification. Inverse Problems in Engineering,7(6), 519–535.

    Google Scholar 

  • Jiao, R. J. (2011). Prospect of design for mass customization and personalization. In Proceedings of the ASME international design engineering technical conferences & computers and information in engineering conference, DETC2011-48919, Washington, DC.

  • Jiao, R. J., & Tseng, M. M. (2013). On equilibrium solutions to joint optimization problems in engineering design. CIRP Annals - Manufacturing Technology,62(1), 155–158.

    Google Scholar 

  • Jiao, Y., & Yang, Y. (2019). A product configuration approach based on online data. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1406-y.

    Article  Google Scholar 

  • Jiao, R. J., Zhou, F., & Chu, C. H. (2017). Decision theoretic modeling of affective and cognitive needs for product experience engineering: key issues and a conceptual framework. Journal of Intelligent Manufacturing,28(7), 1755–1767.

    Google Scholar 

  • Jiao, R. J., Zhou, F., Du, J. (2016). Key issues of incorporating social network effects in product portfolio planning. In IEEE international conference on industrial engineering and engineering management (pp. 1898–1902), Indonesia.

  • Jin, J., Liu, Y., Ji, P., & Kwong, C. K. (2018). Review on recent advances of information mining from big consumer opinion data for product design. ASME Journal of Computing and Information Science in Engineering. https://doi.org/10.1115/1.4041087.

    Article  Google Scholar 

  • Jin, J., Liu, Y., Ji, P., & Liu, H. (2016). Understanding big consumer opinion data for market-driven product design. International Journal of Production Research,54(10), 3019–3041.

    Google Scholar 

  • Jindal, N., & Liu, B. (2006). Mining comparative sentences and relations. In Proceedings of the 21st national conference on Artificial intelligence (Vol. 2). AAAI Press: Boston, Massachusetts.

  • Jo, Y., & Oh, A. H. (2011). Aspect and sentiment unification model for online review analysis. In WSDM’11 (pp. 815–824), Hong Kong.

  • Kai, G., Saha, B., & Saxena, A. (2008). A comparison of three data-driven techniques for prognostics. In The 62nd meeting of the society for machinery failure prevention technology (pp. 119–131).

  • Kamath, C. (2012). Final report: MINDES—data mining for inverse design, LLNL-TR-583076, Lawrence Livermore National Laboratory.

  • Kannan, K., Goyal, M., & Jacob, G. T. (2013). Modeling the impact of review dynamics on utility value of a product. Social Network Analysis and Mining,3(3), 401–418.

    Google Scholar 

  • Keshavarz, A., Wang, Y., & Boyd, S. (2011). Imputing a convex objective function. In IEEE international symposium on intelligent control (pp. 613–619).

  • Kim, P., & Ding, Y. (2005). Optimal engineering system design guided by data-mining methods. Technometrics,47(3), 336–348.

    Google Scholar 

  • Kim, H., Liu, Y., Wang, C. L., & Wang, Y. (2017). Special issue: Data-driven design (D3). ASME Journal of Mechanical Design,139(11), 110301–110301-3.

    Google Scholar 

  • Kim, J. S., & Park, W. G. (2000). Optimized inverse design method for pump impeller. Mechanics Research Communications,27(4), 465–473.

    Google Scholar 

  • Kiritsis, D., Bufardi, A., & Xirouchakis, P. (2003). Research issues on product lifecycle management and information tracking using smart embedded systems. Advanced Engineering Informatics,17(3), 189–202.

    Google Scholar 

  • Koen, P. A. (2004). The fuzzy front end for incremental, platform, and breakthrough products. In K. B. Kahn (Ed.), The PDMA handbook of new product development. Hoboken, NJ: Wiley.

    Google Scholar 

  • Kong, X. T. R., Luo, H., Huang, G. Q., & Yang, X. (2019). Industrial wearable system the human-centric empowering technology in Industry 4.0. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1416-9.

    Article  Google Scholar 

  • Kusiak, A. (2009). Innovation: A data-driven approach. International Journal of Production Economics,122(1), 440–448.

    Google Scholar 

  • Kusiak, A., & Smith, M. (2007). Data mining in design of products and production systems. Annual Reviews in Control,31(1), 147–156.

    Google Scholar 

  • La Torre, D., Kunze, H., Mendivil, F., Galan, M. R., & Zaki, R. (2015). Editorial on inverse problems theory and application to science and engineering 2015. Mathematical Problems in Engineering,2015, 796094.

    Google Scholar 

  • Lee, J., & AbuAli, M. (2011). Innovative Product Advanced Service Systems (I-PASS): Methodology, tools, and applications for dominant service design. International Journal of Advanced Manufacturing Technology,52(9–12), 1161–1173.

    Google Scholar 

  • Lee, K.-Y., Choi, Y.-S., Kim, Y.-L., & Yun, J.-H. (2008). Design of axial fan using inverse design method. Journal of Mechanical Science and Technology,22(10), 1883–1888.

    Google Scholar 

  • Lee, J., & Kao, H.-A. (2014). Dominant innovation design for smart products-service systems (PSS): Strategies and case studies. In Annual SRII global conference (pp. 305–310).

  • Li, H., Bhowmick, S. S., & Sun, A. (2010). Affinity-driven prediction and ranking of products in online product review sites. In CIKM’10 (pp. 1745–1748), Toronto, ON.

  • Li, Z., Wang, Y., & Wang, K. (2019a). A data-driven method based on deep belief networks for backlash error prediction in machining centers. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-017-1380-9.

    Article  Google Scholar 

  • Li, Y., Wang, Z., Zhong, X., & Zou, F. (2019b). Identification of influential function modules within complex products and systems based on weighted and directed complex networks. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1396-9.

    Article  Google Scholar 

  • Liang, Z.-Y., Cui, P., & Zhang, G.-B. (2009). An inverse design method for 2D airfoil. Thermophysics and Aeromechanics,17(1), 51–56.

    Google Scholar 

  • Lim, D.-J. (2016). Inverse DEA with frontier changes for new product target setting. European Journal of Operational Research,254(2), 510–516.

    Google Scholar 

  • Lim, J., Choi, S., Lim, C., & Kim, K. (2017). SAO-based semantic mining of patents for semi-automatic construction of a customer job map. Sustainability,9(8), 1386.

    Google Scholar 

  • Lim, C. H., Kim, M. J., Heo, J. Y., & Kim, K. J. (2018). Design of informatics-based services in manufacturing industries: Case studies using large vehicle-related databases. Journal of Intelligent Manufacturing,29(3), 497–508.

    Google Scholar 

  • Lin, C. J., & Cheng, L. Y. (2017). Product attributes and user experience design: how to convey product information through user-centered service. Journal of Intelligent Manufacturing,28(7), 1743–1754.

    Google Scholar 

  • Lin, K.-Y., Chien, C.-F., & Kerh, R. (2016). UNISON framework of data-driven innovation for extracting user experience of product design of wearable devices. Computers & Industrial Engineering,99, 487–502.

    Google Scholar 

  • Lin, C., & He, Y. (2009). Joint sentiment/topic model for sentiment analysis. In CIKM’09 (pp. 375–384), Hong Kong.

  • Lin, C., He, Y., & Everson, R. (2010). A comparative study of bayesian models for unsupervised sentiment detection. In CONLL’10 (pp. 144–152), Uppsala, Sweden.

  • Lin, Y., Tang, P., Zhang, W. J., & Yu, Q. (2005). Artificial neural network modelling of driver handling behaviour in a driver-vehicle-environment system. International Journal of Vehicle Design,37(1), 24–45.

    Google Scholar 

  • Lin, Y., Zhang, W. J., & Watson, G. (2003). Using eye movement parameters for evaluating human–machine interface frameworks under normal control operation and fault detection situations. International Journal of Human Computer Studies,59(6), 837–873.

    Google Scholar 

  • Liu, G.-L. (2000). A new generation of inverse shape design problem in aerodynamics and aerothermoelasticity: concepts, theory and methods. International Journal of Aircraft Engineering and Aerospace Technology,22(4), 334–344.

    Google Scholar 

  • Liu, J. (2001a). Optimal experimental designs for linear inverse problems. Inverse Problems in Engineering,9(3), 287–314.

    Google Scholar 

  • Liu, J. (2001b). Optimal experimental designs for linear inverse problems. Inverse Problems in Engineering,9(3), 287–314.

    Google Scholar 

  • Liu, Y., Jiang, C., & Zhao, H. (2018). Using contextual features and multi-view ensemble learning in product defect identification from online discussion forums. Decision Support Systems,105, 1–12.

    Google Scholar 

  • Liu, L., Kuo, S. M., & Zhou, M. C. (2009). Virtual sensing techniques and their applications. In IEEE international conference on networking, sensing and control (pp. 31–36), Okayama, Japan.

  • Lo, C. H., Chu, C. H., Yanagisawa, H., & Jiao, R. J. (2017). Editorial: Scientific advances in product experience engineering. Journal of Intelligent Manufacturing,28(7), 1581–1584.

    Google Scholar 

  • Lou, S., Feng, Y., Zheng, H., Gao, Y., & Tan, J. (2019). Data-driven customer requirements discernment in the product lifecycle management via intuitionistic fuzzy sets and electroencephalogram. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1395-x.

    Article  Google Scholar 

  • Lützenberger, J., Klein, P., Hribernik, K., & Thoben, K.-D. (2016). Improving product-service systems across life cycle improving product-service systems by exploiting information from the usage phase. A case study. Procedia CIRP,47(2016), 376–381.

    Google Scholar 

  • Ma, H., Chu, X., Lyu, G., & Xue, D. (2017). An integrated approach for design improvement based on analysis of time-dependent product usage data. ASME Journal of Mechanical Design,139(11), 111401.

    Google Scholar 

  • Ma, H. Z., Chu, X. N., Xue, D. Y., & Chen, D. P. (2016). Identification of to-be-improved components for redesign of complex products and systems based on fuzzy QFD and FMEA. Journal of Intelligent Manufacturing,9, 99. https://doi.org/10.1007/s10845-016-1269-z.

    Article  Google Scholar 

  • Ma, J., & Kim, H. M. (2016). Product family architecture design with predictive, data-driven product family design method. Research in Engineering Design,27(1), 5–21.

    Google Scholar 

  • Maheswari, V. M., Siromoney, A., & Mehata, K. M. (2002). Mining web usage graphs using example search space. International Journal of Computational Intelligence and Applications,2(2), 209–220.

    Google Scholar 

  • Mahnken, R., & Stein, E. (1994). The identification of parameters for visco-plastic models via finite-element methods and gradient methods. Modelling and Simulation in Materials Science and Engineering,2(3A), 597–616.

    Google Scholar 

  • Michopoulos, J. G., & Furukawa, T. (2008). Towards hierarchical design optimization for simultaneous composite material characterization and adjustment of the corresponding physical experiments. Inverse Problems in Science and Engineering,16(6), 763–775.

    Google Scholar 

  • MINDES. (2012). MINDES: Data mining for inverse design project web page. https://computation.llnl.gov/casc/StarSapphire/MINDES.html. Accessed 01 May 2018.

  • Moro, S., Cortez, P., & Rita, P. (2017). A framework for increasing the value of predictive data-driven models by enriching problem domain characterization with novel features. Neural Computing and Applications,28, 1515–1523.

    Google Scholar 

  • Mota Soares, C. M., Orlande, H. R. B., & Herskovits, J. (2010). Special issue on the international conference on engineering optimization (EngOpt 2008). Inverse Problems in Science and Engineering,18(4), 437.

    Google Scholar 

  • Moura Neto, F. D., & Silva Neto, A. (2013). An introduction to inverse problems with Applications. Berlin: Springer. ISBN 978-3-642-32557-1.

  • Murray, P. W., Agard, B., & Barajas, M. A. (2017). Market segmentation through data mining: A method to extract behaviors from a noisy data set. Computers & Industrial Engineering,109, 233–252.

    Google Scholar 

  • Neaga, E. I., & Harding, J. A. (2005). An enterprise modeling and integration framework based on knowledge discovery and data mining. International Journal of Production Research,43(6), 1089–1108.

    Google Scholar 

  • Nguyen Tuan, L., Könke, C., Bettzieche, V., & Lahmer, T. (2018). Uncertainty assessment in the results of inverse problems: Applied to damage detection in masonry dams. International Journal of Reliability and Safety,12, 2–23.

    Google Scholar 

  • Nicholson, D. M., Lackey, S. J., Arnold, R., & Scott, K. (2005). Augmented cognition technologies applied to training: A roadmap for the future. In D. D. Schmorrow (Ed.), Foundations of augmented cognition (pp. 931–940). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Nikfar, M., Ashrafizadeh, A., & Mayeli, P. (2015). Inverse shape design via a new physical-based iterative solution strategy. Inverse Problems in Science and Engineering,23(7), 1138–1162.

    Google Scholar 

  • Nili-Ahmadabadi, M., Durali, M., Hajilouy-Benisi, A., & Ghadak, F. (2009). Inverse design of 2-D subsonic ducts using flexible string algorithm. Inverse Problems in Science and Engineering,17(8), 1037–1057.

    Google Scholar 

  • Olson, T., Mahajan, S., & Pappas, P. (2016). How to leverage product usage analytics to drive success, PULSE 2016, https://www.gainsight.com/pulse/2016/. Accessed 16 July 2018.

  • Opresnik, D., Hirsch, M., Zanetti, C., & Taisch, M. (2013). Information—The hidden value of servitization. In Advances in production management systems. Sustainable production and service supply chains (pp. 49–56). Springer.

  • Padmanabhan, S., Hubner, J. P., Kumar, A. V., & Ifju, P. G. (2006). Load and boundary condition calibration using full-field strain measurement. Experimental Mechanics,46(5), 569–578.

    Google Scholar 

  • Padmanabhan, S., & Kumar, A. V. (2007). Inverse problem for estimation of loads and support compliances from structural response data. AIAA Journal,45(6), 1199–1207.

    Google Scholar 

  • Pahl, G., Beitz, W., Feldhusen, J., & Grote, K.-H. (2007). Engineering design—A systematic approach (3rd ed.). London: Springer.

    Google Scholar 

  • Partala, T., & Kallinen, A. (2012). Understanding the most satisfying and unsatisfying user experiences: Emotions, psychological needs, and context. Interacting with Computers,24(1), 25–34.

    Google Scholar 

  • Perkins, J. D., Paudel, T. R., Zakutayev, A., Ndione, P. F., Parilla, P. A., Young, D. L., et al. (2011). Inverse design approach to hole doping in ternary oxides: Enhancing p-type conductivity in cobalt oxide spinels. Physical Review B,84(20), 205207.

    Google Scholar 

  • Pierret, S. (1997). Turbomachinery blade design using a Navier–Stokes solver and artificial neural network. VKI Lecture Series, 5.

  • Polpinij, J., & Ghose, A. K. (2008). An ontology-based sentiment classification methodology for online consumer reviews. In WI-IAT’08 (pp. 518–524), Sydney, Australia.

  • Porter, M. E., & Heppelmann, J. E. (2015). How smart, connected products are transforming companies. Harvard Business Review,93(10), 96–114.

    Google Scholar 

  • Pricop-Jeckstadt, M. (2018). Nonlinear Tikhonov regularization in Hilbert scales with balancing principle tuning parameter in statistical inverse problems. Inverse Problems in Science and Engineering. https://doi.org/10.1080/17415977.2018.1454918.

    Article  Google Scholar 

  • Reinhart, R. F., Shareef, Z., & Steil, J. J. (2017). Hybrid analytical and data-driven modeling for feed-forward robot control. Sensors,8(17), E311. https://doi.org/10.3390/s17020311.

    Article  Google Scholar 

  • Ruschel, E., Alves Portela Santos, E., & de Freitas Rocha Loures, E. (2018). Establishment of maintenance inspection intervals: an application of process mining techniques in manufacturing. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1434-7.

    Article  Google Scholar 

  • Rybak, J. M. (2006). Remote condition monitoring using open-system wireless technologies. Sound and Vibration,40(2), 16–20.

    Google Scholar 

  • Schmorrow, D. D., & Fidopiastis, C. M. (2016). Foundations of augmented cognition: Neuroergonomics and operational neuroscience. In The 10th international conference, AC 2016, held as part of HCI International 2016, Toronto, ON, Canada.

  • Schütz, W., & Schäfer, R. (2001). Bayesian networks for estimating the user’s interests in the context of a configuration task. In Workshop on machine learning for user modeling, Sonthoven, Bavaria, Germany.

  • Schwabacher, M., Ellman, T., & Hirsh, H. (2001). Learning to set up numerical optimizations of engineering designs. In D. Braha (Ed.), Data mining for design and manufacturing (pp. 87–125). Boston, MA: Kluwer Academic.

    Google Scholar 

  • Searls, D., Dishongh, T., & Dujari, P. (2001). A strategy for enabling data driven product decisions through a comprehensive understanding of the usage environment. In The Pacific Rim/ASME international electronic packaging technical conference and exhibition (pp. 8–13), Maui, HI.

  • Shao, G., Brodsky, A., Shin, S. J., & Kim, D. B. (2017). Decision guidance methodology for sustainable manufacturing using process analytics formalism. Journal of Intelligent Manufacturing,28(2), 455–472.

    Google Scholar 

  • Shin, J. H., Kiritsis, D., & Xirouchakis, P. (2015). Design modification supporting method based on product usage data in closed-loop PLM. International Journal of Computer Integrated Manufacturing,28(6), 551–568.

    Google Scholar 

  • Shkarayev, S., Krashantisa, R., & Tessler, A. (2001). An inverse interpolation method utilizing in-flight strain measurements for determining loads and structural response of aerospace vehicles. In The 3rd international workshop on structural health monitoring, September 12–14, Stanford, California.

  • Siddhartha, A., & Dagli, C. H. (2013). Augmented cognition in Human–System interaction through coupled action of body sensor network and agent based modeling. Procedia Computer Science, 16, 20–28, ISSN 1877-0509.

  • Smith Schneider, P., Mossi, A. C., França, F. H. R., De Sousa, F. L., & Silva Neto, A. J. (2009). Application of inverse analysis to illumination design. Inverse Problems in Science and Engineering,17(6), 737–753.

    Google Scholar 

  • Sobieczky, H., Dulikravich, G. S, & Dennis, B. H. (2002). Parameterised geometry formulation for inverse design and optimization. In Proceedings of 4th international conference on inverse problems in engineering, Rio de Janeiro, Brazil.

  • Soemarwoto, B. I. (1995). Robust inverse shape design in aerodynamics. Inverse Problems in Engineering,1(2), 153–177.

    Google Scholar 

  • Stone, R. B., Tumer, I. Y., & Wie, M. V. (2005). The function-failure design method. ASME Journal of Mechanical Design,127(3), 397–407.

    Google Scholar 

  • Suh, N. P. (2001). Axiomatic design: Advances and applications. Oxford: Oxford University Press.

    Google Scholar 

  • Sultan, I. A. (2008). Inverse geometric design for a class of rotary positive displacement machines. Inverse Problems in Science and Engineering,16(2), 127–139.

    Google Scholar 

  • Takahashi, S., Obayashi, S., & Nakahashi, K. (1998). Inverse optimization of transonic wing design using multiobjective genetic algorithms. Inverse Problems in Engineering,6(4), 317–330.

    Google Scholar 

  • Tao, F., Sui, F., Liu, A., Qi, Q., Zhang, M., Song, B., et al. (2018). Digital twin-driven product design framework. International Journal of Production Research. https://doi.org/10.1080/00207543.2018.1443229.

    Article  Google Scholar 

  • Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Philadelphia: Society for Industrial and Applied Mathematics, SIAM. ISBN 978-0-89871-572-9.

  • Thürer, M., Pan, Y. H., Qu, T., Luo, H., Li, C. D., & Huang, G. Q. (2019). Internet of Things (IoT) driven Kanban system for reverse logistics solid waste collection. Journal of Intelligent Manufacturing,9, 99. https://doi.org/10.1007/s10845-016-1278-y.

    Article  Google Scholar 

  • Tiow, W. T., & Zangeneh, M. (2002). Application of a three-dimensional viscous transonic inverse method to NASA rotor 67. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy,216(A3), 243–255.

    Google Scholar 

  • Torabi, S. H. R., Alibabaei, S., Bonab, B. B., Sadeghi, M. H., & Faraji, G. (2017). Design and optimization of turbine blade preform forging using RSM and NSGA II. Journal of Intelligent Manufacturing,28(6), 1409–1419.

    Google Scholar 

  • Torra, V. (2003). Trends in information fusion in data mining. In V. Torra (Ed.), Information fusion in data mining, studies in fuzziness and soft computing. Berlin: Springer.

    Google Scholar 

  • Tsai, K. M., & Luo, H. J. (2017). An inverse model for injection molding of optical lens using artificial neural network coupled with genetic algorithm. Journal of Intelligent Manufacturing,28(2), 473–487.

    Google Scholar 

  • Tsao, Y. C., & Chen, P. (2017). Design for product experience: a study on the analepsis construction of product use. Journal of Intelligent Manufacturing,28(7), 1645–1666.

    Google Scholar 

  • Tuarob, S., Tucker, C. S., Salathe, M., & Ram, N. (2013). Discovering health-related knowledge in social media using ensembles of heterogeneous features. In Proceedings of the 22nd ACM international conference on conference on information & knowledge management (pp. 1685–1690), ACM, New York.

  • Tucker, C. S., & Kim, H. M. (2009). Data-driven decision tree classification for product portfolio design optimization. Journal of Computing and Information Science in Engineering,9(4), 041004.

    Google Scholar 

  • Tucker, C., & Kim, H. M. (2011). Predicting emerging product design trend by mining publicity available customer review data. In: ICED’11 (pp. 43–52), Copenhagen, Denmark.

  • van Horn, D., Olewnik, A., & Lewis, K. (2012). Design analytics: Capturing, understanding, and meeting customer needs using big data, ASME Paper No. DETC2012-71038.

  • Vichare, N., Rodgers, P., Eveloy, V., & Pecht, M. (2007). Environment and usage monitoring of electronic products for health assessment and product design. Quality Technology & Quantitative Management,4(2), 235–250.

    Google Scholar 

  • Vogel, C. R. (2002). Computational methods for inverse problems. Frontiers in applied mathematics series. Philadelphia: Society for Industrial and Applied Mathematics, SIAM. ISBN 978-0-89871-550-7.

  • Volpe, E. V., Oliveira, G. L., Santos, L. C. C., Hayashi, M. T., & Ceze, M. A. B. (2009). Inverse aerodynamic design applications using the MGM hybrid formulation. Inverse Problems in Science and Engineering,17(2), 245–261.

    Google Scholar 

  • Wang, L. (2011). Product design selection using online customer reviews. Ph.D. Dissertation, University of Maryland.

  • Wang, M., & Chen, W. (2015). A data-driven network analysis approach to predicting customer choice sets for choice modeling in engineering design. ASME Journal of Mechanical Design,137(7), 071410.

    Google Scholar 

  • Wang, S., Hou, L., Lee, J., & Bu, X. J. (2017a). Evaluating wheel loader operating conditions based on radar chart. Automation in Construction,84(Dec), 42–49.

    Google Scholar 

  • Wang, F., Li, H., & Liu, A. (2018). A novel method for determining the key customer requirements and innovation goals in customer collaborative product innovation. Journal of Intelligent Manufacturing,29(1), 211–225.

    Google Scholar 

  • Wang, P., Tao, K., Gao, C., Ning, X., Gu, S., & Deng, B. (2017). Eliciting big data requirement from big data itself: A task-directed approach. In IEEE 6th international workshop on software mining (pp. 17–23).

  • Wang, Y., Yagola, A. G., & Yang, C. (2012). Computational methods for applied inverse problems. de Gruyter/Higher Education Press. ISBN-13: 978-3110259049.

  • Wang, L., Youn, B. D., Azarm, S., & Kannan, P. K. (2011). Customer-driven product design selection using web based user-generated content. In ASME IDETC’11 (pp. 405–419), Washington, DC.

  • Wei, Q., Zhang, J., & Zhang, X. (2000). An inverse DEA model for inputs/outputs estimate. European Journal of Operational Research,121(1), 151–163.

    Google Scholar 

  • West, R. M., & Lesnic, D. (2007). Editorial: inverse problems in engineering. In: Selected papers from the 5th international conference on inverse problems in engineering: Theory and practice 2005, measurement science and technology, 18(1).

  • Wu, D., Zhang, L. L., & Jiao, R. J. (2013). SysML-based design chain information modeling for variety management in production reconfiguration. Journal of Intelligent Manufacturing,24, 575–596.

    Google Scholar 

  • Xu, X., Tan, S., Liu, Y., Cheng, X., & Lin, Z. (2012). Towards jointly extracting aspects and aspect-specific sentiment knowledge. In: CIKM’12 (pp. 1895–1899).Washington, DC.

  • Yang, C. C., Wong, Y. C., & Wei, C.-P. (2009). Classifying web review opinions for consumer product analysis. In: ICEC’09, pp. 57–63, Taiwan.

  • Yannou, B., Yvars, P.-A., Hoyle, C., & Chen, W. (2013). Set-based design by simulation of usage scenario coverage. Journal of Engineering Design,24(8), 575–603.

    Google Scholar 

  • Yin, J., Li, J., Wang, D., & Wei, X. (2014). A simple inverse design method for pump turbine. IOP Conference Series Earth and Environmental Science,22(1), 012030.

    Google Scholar 

  • Yin, J., & Wang, D. (2014). Review on applications of 3D inverse design method for pump. Chinese Journal of Mechanical Engineering,27(3), 520–527.

    Google Scholar 

  • Yu, L., Kokenyesi, R. S., Keszler, D. A., & Zunger, A. (2013). Inverse design of high absorption thin-film photovoltaic materials. Advanced Energy Materials,3(1), 43–48.

    Google Scholar 

  • Zagibalov, T., & Carroll, J. (2008). Automatic seed word selection for unsupervised sentiment classification of chinese text. In: COLING’08 (pp. 1073–1080), Manchester, UK.

  • Zakutayev, A., Zhang, X., Nagaraja, A., Yu, L., Lany, S., Mason, T. O., et al. (2013). Theoretical prediction and experimental realization of new stable V-IX-IV semiconductors using the inverse design approach. Journal of the American Chemical Society,135(27), 10048–10054.

    Google Scholar 

  • Zangeneh, M., Goto, A., & Harada, H. (1998). On the design criteria for suppression of secondary flows in centrifugal and mixed flow impellers. Journal of Turbomachinery-Transactions of the ASME,120(4), 723–735.

    Google Scholar 

  • Zangeneh, M., Goto, A., & Harada, H. (1999). On the role of three-dimensional inverse design methods in turbomachinery shape optimization. Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science,213(1), 27–42.

    Google Scholar 

  • Zhan, Y., Tan, K. H., Li, Y., & Tse, Y. K. (2016). Unlocking the power of big data in new product development. Annals of Operations Research,9, 99. https://doi.org/10.1007/s10479-016-2379-x.

    Article  Google Scholar 

  • Zhang, W. J. (1994). An integrated environment for CADCAM of mechanical systems. PhD Thesis, TU Delft, The Netherlands.

  • Zhang, L., Chu, X., Chen, H., & Xue, D. (2017). Identification of performance requirements for design of smartphones based on analysis of the collected operating data. ASME Journal of Mechanical Design,139(11), 111418.

    Google Scholar 

  • Zhang, J., & Farritor, S. (2004). Using a neural network to determine fitness in genetic design. Inverse Problems in Science and Engineering,12(6), 629–642.

    Google Scholar 

  • Zhang, C., & Ma, Y. (2012). Ensemble machine learning: Methods and applications. Berlin: Springer.

    Google Scholar 

  • Zhang, Y., & Pennacchiotti, M. (2013). Predicting purchase behaviors from social media. In: Proceedings of the 22nd international conference on World Wide Web, International World Wide Web Conferences Steering Committee (pp. 1521–1532), Rio de Janeiro, Brazil.

  • Zhao, H., Icoz, T., Jaluria, Y., & Knight, D. (2007). Application of data-driven design optimization methodology to a multi-objective design optimization problem. Journal of Engineering Design,18(4), 343–359.

    Google Scholar 

  • Zhao, J., Song, J., Montazeri, A., Gupta, M. M., Lin, Y., Wang, C., et al. (2018). Mining affective words to capture customer’s affective response to apparel products. Textile Research Journal,88(12), 1426–1436.

    Google Scholar 

  • Zheng, P., Xu, X., & Chen, C.-H. (2018). A data-driven cyber-physical approach for personalised smart, connected product co-development in a cloud-based environment. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1430-y.

    Article  Google Scholar 

  • Zhou, F., Jiao, R. J., & Lei, B. (2015a). A linear threshold-hurdle model for product adoption prediction incorporating social network effects. Information Sciences,307(June), 95–109.

    Google Scholar 

  • Zhou, F., Jiao, R. J., & Linsey, J. (2015b). Latent customer needs elicitation by use case analogical reasoning from sentiment analysis of online product reviews. ASME Journal of Mechanical Design,137(7), 071401.

    Google Scholar 

  • Zhou, F., Jiao, R. J., Yang, J. X., & Lei, B. (2017). Augmenting feature model through customer preference mining by hybrid sentiment analysis. Expert Systems with Applications,89(8), 306–317.

    Google Scholar 

  • Zhou, F., Xu, Q., & Jiao, R. J. (2011). Fundamentals of product ecosystem design for user experience. Research in Engineering Design,22(1), 43–61.

    Google Scholar 

  • Zhou, F., Xu, Q., Jiao, R. J., & Helander, M. G. (2013). Emotion prediction from physiological signals: A comparison study between visual and auditory elicitors. Interacting with Computers. https://doi.org/10.1093/iwc/iwt039.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Jiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Jiao, R.J. Data-informed inverse design by product usage information: a review, framework and outlook. J Intell Manuf 31, 529–552 (2020). https://doi.org/10.1007/s10845-019-01463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-019-01463-2

Keywords

Navigation