Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Recurrent feature-incorporated convolutional neural network for virtual metrology of the chemical mechanical planarization process

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In semiconductor manufacturing, the chemical mechanical planarization (CMP) process produces higher thickness variability in the edge area of the wafer than that in the center area due to the characteristics of the polishing operation. To address this problem, advanced CMP equipment includes a function that controls the removal rate of each area. However, to take full advantage of this capability, effective advanced process control systems must be implemented with a virtual metrology (VM) model. However, the prediction performance of the VM model often deteriorates due to process drift. Here, we present a deep learning-based VM model that demonstrates high performance in the presence of nonlinear process drift. The proposed model combines a recurrent neural network and a convolutional neural network to extract time-dependent and time-independent features. A two-stage model training method is proposed that alternately updates the weights of each network to improve prediction performance. In the experiments using on-site CMP process data, the performance of the deep learning models exceeded that of standard machine learning models. The proposed model showed an 8.48% decrease in process variability relative to the best-performing machine learning model, which was elastic nets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Hamid, O., Deng, L., & Yu, D. (2013). Exploring convolutional neural network structures and optimization techniques for speech recognition. In Interspeech (Vol. 2013, pp. 3366–3370). https://pdfs.semanticscholar.org/655a/e6f82c24e3e01b2b27c56512b06ba36d49c1.pdf. Accessed 15 Feb 2018.

  • Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in Machine Learning,2(1), 1–127. https://doi.org/10.1561/2200000006.

    Article  Google Scholar 

  • García, V., Sánchez, J. S., Rodríguez-Picón, L. A., Méndez-González, L. C., & de Jesús Ochoa-Domínguez, H. (2018). Using regression models for predicting the product quality in a tubing extrusion process. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1418-7.

    Article  Google Scholar 

  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Proceedings of neural information processing systems (pp. 2672–2680).

  • Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.

  • Haeusser, P., Mordvintsev, A., & Cremers, D. (2017). Learning by association-a versatile semi-supervised training method for neural networks. In Proceedings of IEEE conference on computer vision and pattern recognition. arXiv preprint arXiv:1706.00909.

  • Hinton, G., Srivastava, N., & Swersky, K. (2012). Lecture 6a overview of mini-batch gradient descent. In Neural networks for machine learning. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf. Accessed 30 June 2018.

  • Hsieh, Y. S., Cheng, F. T., Huang, H. C., Wang, C. R., Wang, S. C., & Yang, H. C. (2013). VM-based baseline predictive maintenance scheme. IEEE Transactions on Semiconductor Manufacturing,26(1), 132–144.

    Article  Google Scholar 

  • Jebri, M. A., El Adel, E. M., Graton, G., Ouladsine, M., & Pinaton, J. (2017). Virtual metrology applied in run-to-run control for a chemical mechanical planarization process. Journal of Physics: Conference Series,783, 012042.

    Google Scholar 

  • Kang, P., Kim, D., & Cho, S. (2016). Semi-supervised support vector regression based on self-training with label uncertainty: An application to virtual metrology in semiconductor manufacturing. Expert Systems with Applications,51, 85–106.

    Article  Google Scholar 

  • Kang, P., Kim, D., Lee, H. J., Doh, S., & Cho, S. (2011). Virtual metrology for run-to-run control in semiconductor manufacturing. Expert Systems with Applications,38(3), 2508–2522.

    Article  Google Scholar 

  • Khan, A. A., Moyne, J. R., & Tilbury, D. M. (2008). Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares. Journal of Process Control,18(10), 961–974.

    Article  Google Scholar 

  • Kim, M., Kang, S., Lee, J., Cho, H., Cho, S., & Park, J. S. (2017). Virtual metrology for copper-clad laminate manufacturing. Computers & Industrial Engineering,109, 280–287.

    Article  Google Scholar 

  • Ko, H. H., Kim, J., Park, S. H., Baek, J. G., & Kim, S. S. (2012). Advanced semiconductor fabrication process control using dual filter exponentially weighted moving average. Journal of Intelligent Manufacturing,23(3), 443–455.

    Article  Google Scholar 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Proceedings of neural information processing systems (pp. 1097–1105).

  • Lee, K. B., Cheon, S., & Kim, C. O. (2017). A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes. IEEE Transactions on Semiconductor Manufacturing,30(2), 135–142.

    Article  Google Scholar 

  • Lee, S. K., Kang, P., & Cho, S. (2014). Probabilistic local reconstruction for k-NN regression and its application to virtual metrology in semiconductor manufacturing. Neurocomputing,131, 427–439.

    Article  Google Scholar 

  • Lenz, B., Barak, B., Mührwald, J., & Leicht, C. (2013). Virtual metrology in semiconductor manufacturing by means of predictive machine learning models. In 12th IEEE international conference on machine learning and applications (Vol. 2, pp. 174–177). IEEE.

  • Li, Z., Wang, Y., & Wang, K. (2017). A data-driven method based on deep belief networks for backlash error prediction in machining centers. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-017-1380-9.

    Article  Google Scholar 

  • Lin, H., Li, B., Wang, X., Shu, Y., & Niu, S. (2018). Automated defect inspection of LED chip using deep convolutional neural network. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1415-x.

    Article  Google Scholar 

  • Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019.

  • Luo, M., Yan, H. C., Hu, B., Zhou, J. H., & Pang, C. K. (2015). A data-driven two-stage maintenance framework for degradation prediction in semiconductor manufacturing industries. Computers & Industrial Engineering,85, 414–422.

    Article  Google Scholar 

  • May, G. S., & Spanos, C. J. (2006). Fundamentals of semiconductor manufacturing and process control. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Melhem, M., Ananou, B., Ouladsine, M., & Pinaton, J. (2016). Regression methods for predicting the product’s quality in the semiconductor manufacturing process. IFAC-PapersOnLine,49(12), 83–88.

    Article  Google Scholar 

  • Moyne, J., Del Castillo, E., & Hurwitz, A. M. (2001). Run-to-run control in semiconductor manufacturing. New York: CRC Press LLC.

    Google Scholar 

  • Moyne, J., Schulze, B., Iskandar, J., & Armacost, M. (2016). Next generation advanced process control: Leveraging big data and prediction. In 27th IEEE international conference on advanced semiconductor manufacturing (pp. 191–196). IEEE.

  • Nakata, K., Orihara, R., Mizuoka, Y., & Takagi, K. (2017). A comprehensive big-data-based monitoring system for yield enhancement in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing,30(4), 339–344.

    Article  Google Scholar 

  • Pampuri, S., Schirru, A., Fazio, G., & De Nicolao, G. (2011). Multilevel lasso applied to virtual metrology in semiconductor manufacturing. In 2011 IEEE international conference on automation science and engineering (pp. 244–249). IEEE.

  • Park, C., & Kim, S. B. (2016). Virtual metrology modeling of time-dependent spectroscopic signals by a fused lasso algorithm. Journal of Process Control,42, 51–58.

    Article  Google Scholar 

  • Pimenov, D. Y., Bustillo, A., & Mikolajczyk, T. (2018). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing,29(5), 1045–1061.

    Article  Google Scholar 

  • Purwins, H., Barak, B., Nagi, A., Engel, R., Hockele, U., Kyek, A., et al. (2014). Regression methods for virtual metrology of layer thickness in chemical vapor deposition. IEEE/ASME Transactions on Mechatronics,19(1), 1–8.

    Article  Google Scholar 

  • Sharma, D., Armer, H., & Moyne, J. (2012). A comparison of data mining methods for yield modeling, chamber matching and virtual metrology applications. In 23rd IEEE international conference on advanced semiconductor manufacturing (pp. 231–236). IEEE.

  • Somari, N. M., Abdullah, M. F., Osman, M. K., Nazelan, A. M. I., Ahmad, K. A., Appanan, S. P. R. S., & Hooi, L. K. (2016). Particles contaminations detection during plasma etching process by using k-nearest neighbors and fuzzy k-nearest neighbors. In 6th IEEE international conference on control system, computing and engineering (pp. 512–516). IEEE.

  • Susto, G. A., Johnston, A. B., O’Hara, P. G., & McLoone, S. (2013). Virtual metrology enabled early stage prediction for enhanced control of multi-stage fabrication processes. In 2013 IEEE international conference on automation science and engineering (pp. 201–206). IEEE.

  • Susto, G. A., Pampuri, S., Schirru, A., Beghi, A., & De Nicolao, G. (2015). Multi-step virtual metrology for semiconductor manufacturing: A multilevel and regularization methods-based approach. Computers & Operations Research,53, 328–337.

    Article  Google Scholar 

  • Teixidor, D., Grzenda, M., Bustillo, A., & Ciurana, J. (2015). Modeling pulsed laser micromachining of micro geometries using machine-learning techniques. Journal of Intelligent Manufacturing,26(4), 801–814.

    Article  Google Scholar 

  • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research. http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf. Accessed 10 Jan 2018.

  • Wang, P., Gao, R. X., & Yan, R. (2017). A deep learning-based approach to material removal rate prediction in polishing. CIRP Annals,66(1), 429–432.

    Article  Google Scholar 

  • Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it. Proceedings of the IEEE,78(10), 1550–1560.

    Article  Google Scholar 

  • Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818–833). Berlin: Springer.

Download references

Acknowledgements

This research was supported by a National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (NRF-2016R1A2B4008337) and an NRF Grant funded by the Korean Government (NRF-2015H1A2A1031081-Global Ph.D. Fellowship Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Ouk Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.B., Kim, C.O. Recurrent feature-incorporated convolutional neural network for virtual metrology of the chemical mechanical planarization process. J Intell Manuf 31, 73–86 (2020). https://doi.org/10.1007/s10845-018-1437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-018-1437-4

Keywords

Navigation