Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Nowadays, industrials are seeking for models and methods that are not only able to provide efficient overall production performance, but also for reactive systems facing a growing set of unpredicted events. One important research activity in that field focuses on holonic/multi-agent control systems that couple predictive/proactive and reactive mechanisms into agents/holons. Meanwhile, not enough attention is paid to the optimization of this coupling. The aim of this paper is to depict the main research challenges that are to be addressed before expecting a large industrial dissemination. Relying on an extensive review of the state of the art, three main challenges are highlighted: the estimation of the future performances of the system in reactive mode, the design of efficient switching strategies between predictive and reactive modes and the design of efficient synchronization mechanisms to switch back to predictive mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://grace-project.org/

  2. http://www.smartproducts-project.eu/

  3. http://arum-project.eu/

References

  • Barbosa, J., Leitão, P., Adam, E., & Trentesaux, D. (2012). Nervousness in dynamic self-organized holonic multi-agent systems. Highlights on Practical Applications of Agents and Multi-Agent Systems, Advances in Intelligent and Soft Computing, 156, 9–17.

    Article  Google Scholar 

  • Barbosa, J., Leitão, P., Adam, E., & Trentesaux, D. (2015). Dynamic self-organization in holonic multi-agent manufacturing systems: The ADACOR evolution. Computers in Industry, 66, 99–111. doi:10.1016/j.compind.2014.10.011.

    Article  Google Scholar 

  • Basile, F., Chiacchio, P., & De Tommasi, G. (2009). An efficient approach for online diagnosis of discrete event systems. IEEE Transactions on Automatic Control, 54(4), 748–759. doi:10.1109/TAC.2009.2014932.

    Article  Google Scholar 

  • Berry, W. L., Whybark, D. C., & Vollmann, T. E. (1991). Manufacturing planning and control systems (Business One Irwin/APICS Series in Production Management) (3rd ed.). Burr Ridge: Richard D Irwin.

    Google Scholar 

  • Böhnlein, D., Schweiger, K., & Tuma, A. (2011). Multi-agent-based transport planning in the newspaper industry. International Journal of Production Economics, 131(1), 146–157. doi:10.1016/j.ijpe.2010.04.006.

    Article  Google Scholar 

  • Borangiu, T., Răileanu, S., Berger, T., & Trentesaux, D. (2015). Switching mode control strategy in manufacturing execution systems. International Journal of Production Research, 53(7), 1950–1963. doi:10.1080/00207543.2014.935825.

    Article  Google Scholar 

  • Bussmann, S., & Schild, K. (2001). An agent-based approach to the control of flexible production systems. In Eighth IEEE International Conference on Emerging Technologies and Factory Automation (Vol. 2, pp. 481–488).

  • Cabasino, M. P., Giua, A., & Seatzu, C. (2010). Fault detection for discrete event systems using Petri nets with unobservable transitions. Automatica, 46(9), 1531–1539. doi:10.1016/j.automatica.2010.06.013.

    Article  Google Scholar 

  • Cardin, O., & Castagna, P. (2009). Using online simulation in holonic manufacturing systems. Engineering Applications of Artificial Intelligence, 22(7), 1025–1033. Accessed 8 April 2014.

    Article  Google Scholar 

  • Cardin, O., & Castagna, P. (2011). Proactive production activity control by online simulation. International Journal of Simulation and Process Modelling, 6(3), 177. doi:10.1504/IJSPM.2011.044766.

    Article  Google Scholar 

  • Cardin, O., Mebarki, N., & Pinot, G. (2013). A study of the robustness of the group scheduling method using an emulation of a complex FMS. International Journal of Production Economics, 146(1), 199–207. doi:10.1016/j.ijpe.2013.06.023.

    Article  Google Scholar 

  • Chaari, T., Chaabane, S., Loukil, T., & Trentesaux, D. (2011). A genetic algorithm for robust hybrid flow shop scheduling. International Journal of Computer Integrated Manufacturing, 24(9), 821–833. doi:10.1080/0951192X.2011.575181.

    Article  Google Scholar 

  • Chan, F. T. S., Jiang, B., & Tang, N. K. H. (2000). The development of intelligent decision support tools to aid the design of flexible manufacturing systems. International Journal of Production Economics, 65(1), 73–84. doi:10.1016/S0925-5273(99)00091-2.

    Article  Google Scholar 

  • Dilts, D. M., Boyd, N. P., & Whorms, H. H. (1991). The evolution of control architectures for automated manufacturing systems. Journal of Manufacturing Systems, 10(1), 79–93. doi:10.1016/0278-6125(91)90049-8.

    Article  Google Scholar 

  • Dotoli, M., Pia Fanti, M., Mangini, A. M., & Ukovich, W. (2011). Identification of the unobservable behaviour of industrial automation systems by Petri nets. Control Engineering Practice, 1(9), 958–966. doi:10.1016/j.conengprac.2010.09.004.

    Article  Google Scholar 

  • El Haouzi, H., Pétin, J.-F., & Thomas, A. (2009). Design and validation of a product-driven control system based on a six sigma methodology and discrete event simulation. Production Planning & Control, 20(6), 510–524. doi:10.1080/09537280902938589.

    Article  Google Scholar 

  • Ferrarini, L., Veber, C., Luder, A., Peschke, J., Kalogeras, A., Gialelis, J., et al. (2006). Control Architecture for Reconfigurable Manufacturing Systems: the PABADIS’PROMISE approach. In IEEE Conference on Emerging Technologies and Factory Automation, 2006. ETFA ’06 (pp. 545–552). Presented at the IEEE Conference on Emerging Technologies and Factory Automation, 2006. ETFA ’06. doi:10.1109/ETFA.2006.355427.

  • Ghezail, F., Pierreval, H., & Hajri-Gabouj, S. (2010). Analysis of robustness in proactive scheduling: A graphical approach. Computers & Industrial Engineering, 58(2), 193–198. doi:10.1016/j.cie.2009.03.004.

    Article  Google Scholar 

  • Herrera, C., Thomas, A., Belmokhtar, S., & Pannequin, R. (2011). A viable system model for product-driven systems. In: IESM 2011. Metz, France. https://hal.archives-ouvertes.fr/hal-00607682. Accessed 19 Jan 2015.

  • Herrera, C., Thomas, A., & Parada, V. (2014). A product-driven system approach for multilevel decisions in manufacturing planning and control. Production & Manufacturing Research, 2(1), 756–766. doi:10.1080/21693277.2014.949895.

    Google Scholar 

  • Idghamishi, A. M., & Hashtrudi Zad, S. (2004). Fault diagnosis in hierarchical discrete-event systems. In 43rd IEEE Conference on Decision and Control, 2004. CDC (Vol. 1, pp. 63–68). Presented at the 43rd IEEE Conference on Decision and Control, 2004. CDC. doi:10.1109/CDC.2004.1428607.

  • Kiritsis, D., Kadiri, S. E., Perdikakis, A., Milicic, A., Alexandrou, D., & Pardalis, K. (2013). Design of fundamental ontology for manufacturing product lifecycle applications. In C. Emmanouilidis, M. Taisch, & D. Kiritsis (Eds.), Advances in production management systems. Competitive manufacturing for innovative products and services (pp. 376–382). Springer: Berlin. http://link.springer.com/chapter/10.1007/978-3-642-40352-1_47. Accessed 4 June 2015.

  • Kuehnle, H. (2007). Post mass production paradigm (PMPP) trajectories. Journal of Manufacturing Technology Management, 18(8), 1022–1037. doi:10.1108/17410380710828316.

    Article  Google Scholar 

  • Leitao, P., Barbosa, J., Vrba, P., Skobelev, P., Tsarev, A., & Kazanskaia, D. (2013). Multi-agent system approach for the strategic planning in ramp-up production of small lots. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 4743–4748). Presented at the 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Manchester, UK. doi:10.1109/SMC.2013.807.

  • Leitao, P., Colombo, A. W., & Restivo, F. J. (2005). ADACOR: A collaborative production automation and control architecture. Intelligent Systems, IEEE, 20(1), 58–66.

    Article  Google Scholar 

  • Leitão, P., & Restivo, F. (2006). ADACOR: A holonic architecture for agile and adaptive manufacturing control. Computers in Industry, 57(2), 121–130. doi:10.1016/j.compind.2005.05.005.

    Article  Google Scholar 

  • Li, M., Bril-El Haouzi, H., Thomas, A., & Guidat, A. (2015). Fuzzy decision-making method for product holons encountered emergency breakdown in product-driven system: An industrial case. In T. Borangiu, A. Thomas, & D. Trentesaux (Eds.), Service orientation in holonic and multi-agent manufacturing. Berlin: Springer.

    Google Scholar 

  • Lüder, A., Peschke, J., Sauter, T., Deter, S., & Diep, D. (2004). Distributed intelligence for plant automation based on multi-agent systems: The PABADIS approach. Production Planning & Control, 15(2), 201–212. doi:10.1080/09537280410001667484.

    Article  Google Scholar 

  • Matthias, F., Jäger, T., Turrin, C., Petrali, P., Pagani, A., & Leitao, P. (2013). Implementation of a methodology for consideration of product quality within discrete manufacturing. In B. Natalia (Ed.), Manufacturing modelling, management, and control (Vol. 7, pp. 863–868). Presented at the Manufacturing Modelling, Management, and Control, St. Petersburg, Russia. doi:10.3182/20130619-3-RU-3018.00181.

  • Miche, M., Baumann, K., Golenzer, J., & Brogle, M. (2012). A simulation model for evaluating distributed storage services for smart product systems. In A. Puiatti & T. Gu (Eds.), Mobile and ubiquitous systems: Computing, Networking, and Services (pp. 162–173). Springer: Berlin. http://link.springer.com/chapter/10.1007/978-3-642-30973-1_14. Accessed 10 April 2015.

  • Muhl, E., Charpentier, P., & Chaxel, F. (2003). Optimization of physical flows in an automotive manufacturing plant: Some experiments and issues. Engineering Applications of Artificial Intelligence, 16(4), 293–305. doi:10.1016/S0952-1976(03)00081-2.

    Article  Google Scholar 

  • Novas, J. M., Belle, J. V., Germain, B. S., & Valckenaers, P. (2013). A collaborative framework between a scheduling system and a holonic manufacturing execution system. In T. Borangiu, A. Thomas, & D. Trentesaux (Eds.), Service orientation in holonic and multi agent manufacturing and robotics (pp. 3–17). Springer: Berlin. http://link.springer.com/chapter/10.1007/978-3-642-35852-4_1. Accessed 2 April 2015.

  • Pach, C., Berger, T., Bonte, T., & Trentesaux, D. (2014). ORCA-FMS: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling. Computers in Industry. doi:10.1016/j.compind.2014.02.005.

  • Paoli, A., & Lafortune, S. (2008). Diagnosability analysis of a class of hierarchical state machines. Discrete Event Dynamic Systems, 18(3), 385–413. doi:10.1007/s10626-008-0044-5.

    Article  Google Scholar 

  • Prabhu, V. V., & Duffie, N. A. (1996). Modelling and analysis of heterarchical manufacturing systems using discontinuous differential equations. CIRP Annals-Manufacturing Technology, 45(1), 445–448. doi:10.1016/S0007-8506(07)63099-6.

    Article  Google Scholar 

  • Pujo, P., Broissin, N., & Ounnar, F. (2009). PROSIS: An isoarchic structure for HMS control. Engineering Applications of Artificial Intelligence, 22(7), 1034–1045. doi:10.1016/j.engappai.2009.01.011.

    Article  Google Scholar 

  • Raileanu, S., Parlea, M., Borangiu, T., & Stocklosa, O. (2012). A JADE environment for product driven automation of holonic manufacturing. In T. Borangiu, A. Thomas, & D. Trentesaux (Eds.), Service Orientation in Holonic and Multi-Agent Manufacturing Control (pp. 265–277). Springer: Berlin. http://link.springer.com/chapter/10.1007/978-3-642-27449-7_20. Accessed 2 April 2015.

  • Reinhart, G., & Englehardt, P. (2013). Modular configuration of an RFID-based hybrid control architecture for a situational shop floor control. Industrial and Systems Engineering Review, 1(1), 31–39.

    Google Scholar 

  • Rolón, M., & Martínez, E. (2012). Agent-based modeling and simulation of an autonomic manufacturing execution system. Computers in Industry, 63(1), 53–78. doi:10.1016/j.compind.2011.10.005.

    Article  Google Scholar 

  • Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D. (1995). Diagnosability of discrete-event systems. IEEE Transactions on Automatic Control, 40(9), 1555–1575. doi:10.1109/9.412626.

    Article  Google Scholar 

  • Shahzad, A., & Mebarki, N. (2012). Data mining based job dispatching using hybrid simulation-optimization approach for shop scheduling problem. Engineering Applications of Artificial Intelligence, 25(6), 1173–1181. doi:10.1016/j.engappai.2012.04.001.

    Article  Google Scholar 

  • Stellingwerff, L., & Pazienza, G. E. (2014). An agent-based architecture to model and manipulate context knowledge. In Y. Demazeau, F. Zambonelli, J. M. Corchado, & J. Bajo (Eds.), Advances in practical applications of heterogeneous multi-agent systems. The PAAMS collection (pp. 256–267). Springer. http://link.springer.com/chapter/10.1007/978-3-319-07551-8_22. Accessed 5 April 2015.

  • Thomas, A., El Haouzi, H., Klein, T., Belmokhtar, S., & Herrera, C. (2009). Architecture de systèmes contrôlés par le produit pour un environnement de juste à temps. Journal Européen des Systèmes Automatisés, 43(4–5), 513–535. doi:10.3166/jesa.43.513-535.

    Article  Google Scholar 

  • Thomas, A., Trentesaux, D., & Valckenaers, P. (2012). Intelligent distributed production control. Journal of Intelligent Manufacturing, 23(6), 2507–2512. doi:10.1007/s10845-011-0601-x.

    Article  Google Scholar 

  • Thomas, P., & Thomas, A. (2011). Multilayer perceptron for simulation models reduction: Application to a sawmill workshop. Engineering Applications of Artificial Intelligence, 24(4), 646–657. doi:10.1016/j.engappai.2011.01.004.

    Article  Google Scholar 

  • Valckenaers, P., Van Brussel, H., Verstraete, P., Saint Germain, B., & Karuna, H. (2007). Schedule execution in autonomic manufacturing execution systems. Journal of Manufacturing Systems, 26(2), 75–84. doi:10.1016/j.jmsy.2007.12.003.

    Article  Google Scholar 

  • Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., & Peeters, P. (1998). Reference architecture for holonic manufacturing systems: PROSA. Computers in Industry, 37(3), 255–274. doi:10.1016/S0166-3615(98)00102-X.

    Article  Google Scholar 

  • Verstraete, P., Saint Germain, B., Valckenaers, P., Van Brussel, H., Belle, J., & Hadeli, H. (2008). Engineering manufacturing control systems using PROSA and delegate MAS. International Journal of Agent-Oriented Software Engineering, 2(1), 62–89. doi:10.1504/IJAOSE.2008.0168.

    Article  Google Scholar 

  • Yang, T., Ma, J., Hou, Z.-G., Peng, G., & Tan, M. (2008). A multi-agent architecture based cooperation and intelligent decision making method for multirobot systems. In M. Ishikawa, K. Doya, H. Miyamoto, & T. Yamakawa (Eds.), Neural Information Processing (pp. 376–385). Springer: Berlin. http://link.springer.com/chapter/10.1007/978-3-540-69162-4_39. Accessed 2 April 2015.

  • Zambrano, G., Pach, C., Aissani, N., Berger, T., Trentesaux, D. (2011). An approach for temporal myopia reduction in Heterarchical Control Architectures. In 2011 IEEE International Symposium on Industrial Electronics (ISIE) (pp. 1767–1772). Presented at the. (2011). IEEE International Symposium on Industrial. Electronics (ISIE). doi:10.1109/ISIE.2011.5984424.

  • Zaytoon, J., & Lafortune, S. (2013). Overview of fault diagnosis methods for discrete event systems. Annual Reviews in Control, 37(2), 308–320. doi:10.1016/j.arcontrol.2013.09.009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Cardin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardin, O., Trentesaux, D., Thomas, A. et al. Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges. J Intell Manuf 28, 1503–1517 (2017). https://doi.org/10.1007/s10845-015-1139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1139-0

Keywords

Navigation