Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Minimum spanning tree problem of uncertain random network

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Minimum spanning tree problem is a typical and fundamental problem in combinatorial optimization. Most of the existing literature is devoted to the case with deterministic or random weights. However, due to lack of data, a proportion of edge weights have to be estimated according to experts’ evaluations, which may be considered as uncertain variables. This paper focuses on the case where some weights are random variables and the others are uncertain variables. The concept of an ideal chance distribution is introduced and its expression is given based on the uncertainty distributions and probability distributions. A model is formulated to find a minimum spanning tree whose chance distribution is the closest to the ideal one. Finally, a numerical example is given to illustrate the modelling idea of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bertsimas, D. J. (1990). The probabilistic minimum spanning tree problem. Networks, 20(3), 245–275.

    Article  Google Scholar 

  • Borüvka, O. (1926). O jistém problému minimálním. Práce Mor. Přírodovéd. Spol. v Brně, 3, 37–58.

    Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.

    Article  Google Scholar 

  • Frieze, A. M. (1985). On the value of a random minimum spanning tree problem. Discret Applied Mathematics, 10(1), 47–56.

    Article  Google Scholar 

  • Frank, H., & Hakimi, S. L. (1965). Probabilistic flows through a communication network. IEEE Transactions on Circuit Theory, 12, 413–414.

    Article  Google Scholar 

  • Gao, Y. (2011). Shortest path problem with uncertain arc lengths. Computers and Mathematics with Applications, 62(6), 2591–2600.

    Article  Google Scholar 

  • Gao, J. W., & Yao, K. (2015). Some concepts and theorems of uncertain random process. International Journal of Intelligent Systems, 30(1), 52–65.

  • Guo, H. Y., & Wang, X. S. (2014). Variance of uncertain random variables. Journal of Uncertainty Analysis and Applications, 2, 6.

    Article  Google Scholar 

  • Hou, Y. C. (2014). Subadditivity of chance measure. Journal of Uncertainty Analysis and Applications, 2, 14.

    Article  Google Scholar 

  • Ke, H., Su, T. Y., & Ni, Y. D. (2015). Uncertain random multilevel programming with application to product control problem. Soft Computing (to be published).

  • Ishii, H., Shiode, S., Nishida, T., & Namasuya, Y. (1981). Stochastic spanning tree problem. Discrete Applied Mathematics, 3(4), 263–273.

    Article  Google Scholar 

  • Ishii, H., & Matsutomi, T. (1995). Confidence regional method of stochastic spanning tree problem. Mathematical and Computer Modelling, 22(10), 77–82.

    Article  Google Scholar 

  • Kruskal, J. B. (1956). On the shortest spanning tree subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1), 48–50.

  • Liu, B. (2007). Uncertainty theory (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Liu, B. (2009a). Some research problems in uncertainty theory. Journal of Uncertain Systems, 3(1), 3–10.

  • Liu, B. (2009b). Theory and practice of uncertain programming (2nd ed.). Berlin: Springer.

  • Liu, B. (2010). Uncertainty theory: A branch of mathematics for modeling human uncertainty. Berlin: Springer.

    Book  Google Scholar 

  • Liu, B. (2014). Uncertain random graph and uncertain random network. Journal of Uncertain Systems, 8(1), 3–12.

    Google Scholar 

  • Liu, Y. H., & Ha, M. H. (2010). Expected value of function of uncertain variables. Journal of Uncertain Systems, 4(3), 181–186.

    Google Scholar 

  • Liu, Y. H. (2013a). Uncertain random variables: A mixture of uncertainty and randomness. Soft Computing, 17(4), 625–634.

  • Liu, Y. H. (2013b). Uncertain random programming with applications. Fuzzy Optimization and Decision Making, 12(2), 153–169.

  • Prim, R. C. (1957). Shortest conection networks and some generalizations. Bell System Technical Journal, 36, 1389–1401.

    Article  Google Scholar 

  • Qin, Z. F. (2013). Uncertain random goal programming. http://orsc.edu.cn/online/130323.

  • Sheng, Y. H., & Gao, J. W. (2014). Chance distribution of maximum flow of uncertain random network. Journal of Uncertainty Analysis and Applications, 2, 15.

    Article  Google Scholar 

  • Sheng, Y. H., & Gao, Y. (2015). Shortest path problem of uncertain random network, http://orsc.edu.cn/online/140508.

  • Sheng, Y. H., & Yao, K. (2014). Some formulas of variance of uncertain random variable. Journal of Uncertainty Analysis and Applications, 2, 12.

    Article  Google Scholar 

  • Yao, K., & Gao, J. W. (2015). Uncertain random alternating renewal process with application to interval availability. IEEE Transactions on Fuzzy Systems. doi:10.1109/TFUZZ.20142360551.

  • Zhang, X., Wang, Q. N., & Zhou, J. (2013). Two uncertain programming models for inverse minimum spanning tree problem. Industrial Engineering and Management Systems, 12(1), 9–15.

    Article  Google Scholar 

  • Zhou, J., He, X., & Wang, K. (2014a). Uncertain quadratic minimum spanning tree problem. Journal of Communications, 9(5), 385–390.

  • Zhou, J., Chen, L., & Wang, K. (2015). Path optimality conditions for minimum spanning tree problem with uncertain edge weights. International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems. (to be published).

  • Zhou, J., Yang, F., & Wang, K. (2014b). Multi-objective optimization in uncertain random environments. Fuzzy Optimization and Decision Making, 13(4), 397–413.

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China Grant Nos. 61273044, 61262023 and 71371019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Y., Qin, Z. & Shi, G. Minimum spanning tree problem of uncertain random network. J Intell Manuf 28, 565–574 (2017). https://doi.org/10.1007/s10845-014-1015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-1015-3

Keywords

Navigation