Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fast password recovery attack: application to APOP

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this paper, we improve the password recovery attack to Authentication Post Office Protocol (APOP) from two aspects. First, we propose new tunnels to control more fixed bits of MD5 collision, hence, we can recover passwords with more characters, for example, as long as 43 characters can be recovered practically. Second, we propose a group satisfaction scheme, apply divide-and-conquer strategy and a new suitable MD5 collision attack, to greatly reduce the computational complexity in collision searching with high number of chosen bits. We propose a fast password recovery attack to application APOP in local that can recover a password with 11 characters in >1 min, recover a password with 31 characters extremely fast, about 6 min, and for 43 characters in practical time. These attacks truly simulate the practical password recovery attacks launched by malware in real life, and further confirm that the security of APOP is totally broken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biham E., Shamir A. (1993) Differential cryptanalysis of the data encryption standard. Springer, London, UK

    Book  Google Scholar 

  • den Boer, B., & Bosselaers, A. (1994). Collisions for the compression function of MD5. In Workshop on the theory and application of cryptographic techniques on advances in cryptology, EUROCRYPT ’93 (pp. 293–304). Secaucus, NJ, USA: Springer, New York.

  • FIPS 180-1, Secure Hash Standard. Federal Information Processing Standard (FIPS). (1995). National Institute of Standards and Technology, US Department of Commerce, Washington DC

  • Garrett J. H., Case M. P., Hall J. W., Yerramareddy S., Herman A., Sun R., Ranjithan S., Westervelt J. (1993) Engineering applications of neural networks. Journal of Intelligent Manufacturing 4: 1–21

    Article  Google Scholar 

  • Gonzalez J. L., Marcelnez R. (2011) Phoenix: Fault-tolerant distributed web storage based on URLs. Journal of Convergence 2(1): 79–86

    Google Scholar 

  • Imani M., Taheri M., Naderi M. (2010) Security enhanced routing protocol for ad hoc networks. Journal of Convergence 1(1): 43–48

    Google Scholar 

  • Klima, V. (2006). Tunnels in hash functions: MD5 collisions within a minute. Cryptology ePrint Archive, Report 2006/105. http://eprint.iacr.org/.

  • Leurent, G. (2007). Message freedom in MD4 and MD5 collisions: Application to APOP. In Fast software encryption, 14th international workshop, FSE 2007, Luxembourg, March 26–28, 2007, Revised selected papers (pp. 309–328).

  • Lightner, N., & Zeng, L. (2011). What is still wrong with the world-wide web? an update after a decade. Journal of Intelligent Manufacturing, 22, 3–15. doi:10.1007/s10845-009-0275-9.

    Google Scholar 

  • Liu, F. (2011). On the security of digest access authentication. In Proceedings of the 14th IEEE international conference on computational science and engineering, CSE 2011 and 11th international symposium on pervasive systems, algorithms, and networks, I-SPAN 2011 and 10th IEEE international conference on IUCC 2011 (pp. 427 – 434). Dalian, Liaoning, China. doi:10.1109/CSE.2011.79.

  • Liu F., Xie T. (2012) How to break EAP-MD5. In: Askoxylakis I., Pöhls H., Posegga J. (eds) Information security theory and practice (WISTP 2012), Lecture Notes in Computer Science, vol. 7322. Springer, Berlin/Heidelberg, pp 49–57

    Google Scholar 

  • Liu, F., Xie, T., Feng, Y., & Feng, D. (2012). On the security of PPPoE network. Security and Communication Networks, 1–10. doi:10.1002/sec.512.

  • Liu F., Xie T., Shen C. (2012) Equivalent key recovery attack to H 2-MAC. International Journal of Security and Its Applications 6(2): 331–336

    Google Scholar 

  • Myers, J., & Rose, M. (1996). Post office protocol—version 3. RFC 1939 (Standard). http://www.ietf.org/rfc/rfc1939.txt. Updated by RFCs 1957, 2449.

  • Naito, Y., Sasaki, Y., Shimoyama, T., Yajima, J., Kunihiro, N., & Ohta, K. (2006). Improved collision search for SHA-0. In X. Lai, & K. Chen (Eds.), Advances in cryptology ASIACRYPT 2006, Lecture Notes in Computer Science (Vol. 4284, pp. 21–36). Berlin/Heidelberg: Springer

  • Oh, S. (2010). New role-based access control in ubiquitous e-business environment. Journal of Intelligent Manufacturing 21, 607–612. doi:10.1007/s10845-008-0208-z.

    Google Scholar 

  • Preneel, B., & Van Oorschot, P. C. (1996). On the security of two MAC algorithms. In Proceedings of the 15th annual international conference on theory and application of cryptographic techniques, EUROCRYPT’96 (pp. 19–32). Berlin, Heidelberg: Springer.

  • Rahman M. Z., Pathan A. S. K. (2010) A case study: Establishing redundant access networks in the telecommunication sector of a developing country. International Journal of Information Technology, Communications and Convergence 1(1): 108–126

    Article  Google Scholar 

  • Ramanan T., Sridharan R., Shashikant K., Haq A. (2011) An artificial neural network based heuristic for flow shop scheduling problems. Journal of Intelligent Manufacturing 22: 279–288

    Article  Google Scholar 

  • Rivest, R. (1992a). The MD4 Message-Digest Algorithm. RFC 1320. http://www.ietf.org/rfc/rfc320.txt.

  • Rivest, R. (1992b). The MD5 Message-Digest Algorithm. RFC 1321. http://www.ietf.org/rfc/rfc321.txt.

  • Sasaki, Y., Wang, L., Ohta, K., & Kunihiro, N. (2008). Security of MD5 challenge and response: Extension of APOP password recovery attack. In Proceedings of the 2008 the cryptopgraphers’ track at the RSA conference on topics in cryptology, CT-RSA’08 (pp. 1–18). Berlin, Heidelberg: Springer.

  • Sasaki, Y., Yamamoto, G., & Aoki, K. (2007). Practical password recovery on an MD5 challenge and response. Cryptology ePrint Archive, Report 2007/101. http://eprint.iacr.org/.

  • Stevens, M. (2007). On collisions for MD5. Master’s thesis, TU Eindhoven, Faculty of Mathematics and Computer Science

  • Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A., & Weger, B. (2009). Short chosen-prefix collisions for MD5 and the creation of a rogue CA certificate. In Proceedings of the 29th annual international cryptology conference on advances in cryptology (pp. 55–69). Berlin, Heidelberg: Springer

  • Wang, L., Sasaki, Y., Sakiyama, K., & Ohta, K. (2009). Bit-free collision: Application to APOP attack. In Proceedings of the 4th international workshop on security: Advances in information and computer security, IWSEC ’09 (pp. 3–21). Berlin, Heidelberg: Springer.

  • Wang, X., Feng, D., Lai, X., & Yu, H. (2004). Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199. http://eprint.iacr.org/.

  • Wang, X., Lai, X., Feng, D., Chen, H., & Yu, X. (2005a). Cryptanalysis of the hash functions md4 and ripemd. In R. Cramer (Ed.), Advances in cryptology EUROCRYPT 2005, Lecture Notes in Computer Science (Vol. 3494, pp. 551–551). Berlin/Heidelberg: Springer.

  • Wang, X., Yin, Y., & Yu, H. (2005b). Finding collisions in the full SHA-1. In V. Shoup (Ed.), Advances in cryptology CRYPTO 2005, Lecture Notes in Computer Science (Vol. 3621, pp. 17–36). Berlin/Heidelberg: Springer.

  • Wang, X., & Yu, H. (2005). How to break MD5 and other hash functions. In R. Cramer (Ed.), Advances in cryptology EUROCRYPT 2005, Lecture Notes in Computer Science, (Vol. 3494, pp. 561–561). Berlin/Heidelberg: Springer.

  • Wang, X., Yu, H., & Yin, Y. (2005c). Efficient collision search attacks on sha-0. In V. Shoup (Ed.), Advances in cryptology CRYPTO 2005, Lecture Notes in Computer Science (Vol. 3621, pp. 1–16). Berlin/Heidelberg: Springer.

  • Xie B., Kumar A., Zhao D., Reddy R., He B. (2010) On secure communication in integrated heterogeneous wireless networks. International Journal of Information Technology, Communications and Convergence 1(1): 4–23

    Article  Google Scholar 

  • Xie, T., & Feng, D. (2009). How To find weak input differences for MD5 collision attacks. Cryptology ePrint Archive, Report 2009/223. http://eprint.iacr.org/.

  • Xie, T., & Feng, D. (2010). Construct MD5 Collisions Using Just A Single Block Of Message. Cryptology ePrint Archive, Report 2010/643. http://eprint.iacr.org/.

  • Xie, T., Feng, D., & Liu, F. (2008). A new collision differential for MD5 with its full differential path. Cryptology ePrint Archive, Report 2008/230. http://eprint.iacr.org/.

  • Xie, T., Liu, F., & Feng, D. (2008). Could the 1-MSB input difference be the fastest collision attack for MD5? LNCS 5479, the poster session of EUROCRYPT 2009. Cryptology ePrint Archive, Report 2008/391. http://eprint.iacr.org/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanbao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Liu, Y., Xie, T. et al. Fast password recovery attack: application to APOP. J Intell Manuf 25, 251–261 (2014). https://doi.org/10.1007/s10845-012-0670-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-012-0670-5

Keywords

Navigation