Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Image contrast enhancement for intelligent surveillance systems using multi-local histogram transformation

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Among all applications to monitor the safety and security of working environments, surveillance systems that use computer vision are the most efficient and intuitive in the manufacturing industry. This paper introduces a new technique of contrast enhancement for surveillance systems using computer vision. The histogram equalization method is a common and widespread image enhancement method which maximizes the contrast of the image. This contrast enhancement method usually improves the quality of images, but it can suffer from visual deterioration caused by excessive histogram modification. To overcome the limitations of conventional contrast enhancement methods, this paper introduces a new multi-local histogram transformation method for surveillance systems. This technique is based on the local histograms, which are separated from the overall histogram of the image, and the contrast of the image can be enhanced through two major processes: range reassignment of local histograms and local histogram equalization. The multi-local histogram transformation in this paper enhances the contrast of images, preventing excessive compression and extension of image histograms. The performance of the suggested contrast enhancement method is verified by the experiments in four different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandaranayake A. U., Pandit V., Agrawal D. P. (2012) Indoor link quality comparison of IEEE 802.11a channels in a multi-radio mesh network testbed. Journal of Information Processing Systems 8(1): 1–20

    Article  Google Scholar 

  • Capgemini, & IDG Global Solutions. (2008). Manufacturing in 2020. Envisioning a Future Characterised by Increased Internationalisation, Collaboration and Complexity. Capgemini. http://www.capgemini.com/insights-and-resources/by-publication/manufacturing_in_2020/. Accessed 15 September 2011.

  • Chen S., Ramli A. R. (2003) Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Transactions on Consumer Electronics 49(4): 1301–1309

    Article  Google Scholar 

  • Chen S., Ramli A. R. (2003) Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Transactions on Consumer Electronics 49(4): 1310–1319

    Article  Google Scholar 

  • Chong R. M., Tanaka T. (2010) Motion Blur identification using maxima locations for blind colour image restoration. Journal of Convergence 1(1): 49–56

    Google Scholar 

  • Choudhary A. K., Harding J. A., Tiwari M. K. (2009) Data mining in manufacturing: A review based on the kind of knowledge. Journal of Intelligent Manufacturing 20(5): 501–521

    Article  Google Scholar 

  • Craik K. J. W. (1938) The effect of adaptation on differential brightness discrimination. The Journal of Physiology 92: 406–421

    Google Scholar 

  • Desforges X., Habbadi A., Geneste L., Soler F. (2004) Distributed machining control and monitoring using smart sensors/actuators. Journal of Intelligent Manufacturing 15(1): 39–53

    Article  Google Scholar 

  • Evdokimov S., Fabian B., Günther O., Ivantysynova L., Ziekow H. (2011) RFID and the internet of things: Technology, applications, and security challenges. Foundations and Trends in Technology, Information and Operations Management 4(2): 105–185

    Article  Google Scholar 

  • Gonzalez R. C., Woods R. E. (2002) Digital image processing. Prentice Hall, New Jersey

    Google Scholar 

  • Ho A. H., Ho Y. H., Hua K. A., Villafane R., Chao H.-C. (2010) An efficient broadcast technique for vehicular networks. Journal of Information Processing Systems 7(2): 221–240

    Article  Google Scholar 

  • Hou T.-H., Huang C.-C. (2004) Application of fuzzy logic and variable precision rough set approach in a remote monitoring manufacturing process for diagnosis rule induction. Journal of Intelligent Manufacturing 15(3): 395–408

    Article  Google Scholar 

  • Hu, J., Wang, D., Ding, Y., Zhang, J., & Tan, H. (2010). Design and implementation of intelligent RFID security authentication system. In Proceedings of 2010 IEEE international conference on RFID-technology and applications, RFID-TA 2010, (pp. 286–290).

  • Huang C., Cheng R.-H., Chen S.-R., Li C.-I. (2010) Enhancing network availability by tolerance control in multi-sink wireless sensor networks. Journal of Convergence 1(1): 15–22

    Google Scholar 

  • Ibrahim H., Kong N. S. P. (2007) Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics 53(4): 1752–1758

    Article  Google Scholar 

  • Kabir H., Al-Wadud A., Chae O. (2010) Brightness preserving image contrast enhancement using weighted mixture of global and local transformation functions. International Arab Journal of Information Technology 7(4): 403–410

    Google Scholar 

  • Kim I. S., Choi H. S., Yi K. M., Choi J. Y., Kong S. G. (2010) Intelligent visual surveillance—A survey. International Journal of Control, Automation and Systems 8(5): 926–939

    Article  Google Scholar 

  • Kim Y. T. (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics 43(1): 1–8

    Article  Google Scholar 

  • Kumar D., Aseri T. C., Patel R. B. (2011) Multi-hop communication routing (MCR) protocol for heterogeneous wireless sensor networks. International Journal of Information Technology, Communications and Convergence 1(2): 130–145

    Article  Google Scholar 

  • Ooi C. H., Kong N. P., Ibrahim H. (2009) Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Transactions on Consumer Electronics 55(4): 2072–2080

    Article  Google Scholar 

  • Ooi C. H., Isa N. A. M. (2010) Adaptive contrast enhancement methods with brightness preserving. IEEE Transactions on Consumer Electronics 56(4): 2543–2551

    Article  Google Scholar 

  • Pizer S. M., Amburn E. P., Austin J. D., Cromartie R., Geselowitz A., Greer T. et al (1987) Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing 39(3): 355–368

    Article  Google Scholar 

  • Sahebjamnia N., Mahdavi I., Cho N. (2010) Designing a new model of distributed quality control for sub-assemble products based on the intelligent web information system. Journal of Intelligent Manufacturing 21(4): 511–523

    Article  Google Scholar 

  • Srivastava A., Gupta J. P. (2010) New methodologies for security risk assessment of oil and gas industry. Process Safety and Environmental Protection 88(6): 407–412

    Article  Google Scholar 

  • Wang X. (2011) Application of IOT technologies in campus security system. Advanced Materials Research 268-270: 1884–1887

    Article  Google Scholar 

  • Xie B., Kumar A., Zhao D., Reddy R., He B. (2010) On secure communication in integrated heterogeneous wireless networks. International Journal of Information Technology, Communications and Convergence 1(1): 4–23

    Article  Google Scholar 

  • Xu Y., Ge M. (2004) Hidden Markov model-based process monitoring system. Journal of Intelligent Manufacturing 15(3): 337–350

    Article  Google Scholar 

  • Yang S. J., Oh J. H., Park Y. J. (2003) Contrast enhancement using histogram equalization with bin underflow and bin overflow. IEEE International Conference on Image Processing 1: 881–884

    Google Scholar 

  • Zuo, C., Chen, Q., & Sui, X. (2012). Range limited bi-histogram equalization for image contrast enhancement.Optik, doi:10.1016/j.ijleo.2011.12.057.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwi-Tae Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, HJ., Park, GT. Image contrast enhancement for intelligent surveillance systems using multi-local histogram transformation. J Intell Manuf 25, 303–318 (2014). https://doi.org/10.1007/s10845-012-0663-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-012-0663-4

Keywords

Navigation